


# HIGH PERFORMANCE BUTTERFLY VALVES

# Score-TRICENTRIC® Valves Metal-to-Metal Seated




PLAIN WAFER



TAPPED LUGGED WAFER



DOUBLE FLANGED



**Score-TRICENTRIC®** Reduced Port Valves to match reducing flanges where jacketed piping systems are required. Valves can be steam jacketed and equipped with steam traced shafts, if required.

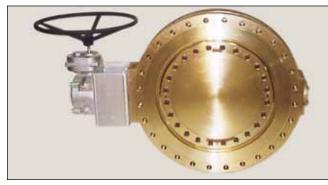


**Score-TRICENTRIC®** Steam Jacketed Valves with steam traced shafts for molten sulphur and pitch applications

Score-TRICENTRIC® Acid Gas/Tail Gas/Flow Gas Valves. Triple offset seat design assures a



frictionless seal for high cycle and extended valve life. Torque seated design assures tight shut-off at low and high pressures. Steam jacketed and steam traced shafts when required by application. No elastomers or teflon.






RE SCORE ENERGY PRODUCTS INC.



**Score-TRICENTRIC® Cryogenic Valves.** Tight shut-off, zero leakage at temperatures as low as -425° F. Liquid oxygen, nitrogen and liquid natural gas



# Score-TRICENTRIC<sup>®</sup> Valves for Sea Water Service.

- Nickel-Aluminum Bronze
- Monel
- Duplex
- Zeron 100

# Score-TRICENTRIC<sup>®</sup> Valves for High Temperatures.

- High temperature materials
- Bonnet extensions
- Cooling Fins on bonnet

#### Score-TRICENTRIC<sup>®</sup> Control Valves

- Swing thru disc
- Designed for flow control
- Liquids
- High temperature gases
- Excellent flow and throttling characteristics in a wide range of applications.







# Score-Tricentric®

#### The valve that outperforms any other valve. Proven as an industry leader in:

- Chemical Plants
- Refineries
- Gas Plants
- **Oxygen Plants**

- Aluminum Smelters
- Power Plants
- ➡ Pulp & Paper Mills
- Steel Mils

#### The Score-TRICENTRIC® valves are proven in many applications:

- Hydrogen gas
- Dirty hot cracking gas
- Acid gas & Tail gas
- Sulphur service
- CO<sub>2</sub> Vapours
- Ethylene service
- Liquid or gaseous oxygen
- Fuel oil storage
- Hot oil service
- Steam service
- Brine
- Black Liquor
- Red Liquor

- Blast furnace isolation
- Coke service
- Pump isolation
- Heat exchangers
- Pitch
- Gas pipeline switching valves
- Cryogenics
- Service water
- Sea water
- Control & throttling service
- Cooling water
- Green Liquor
- Pulp Stock





**Score-TRICENTRIC®** valves are manufactured to the highest quality and standards. Built to customer requirements for special applications and severe service conditions.

# DESIGN

- ASME B16.34 (ANSI B16.34)
- Fire safe (tested) API 607 4<sup>th</sup> Edition
- Fully complies with API 609 5th Edition
- Body Flange Bolting B16.5, B16.47 Series A, B16.47 Series B
- Testing API 598 O-Leakage or ANSI FCI-70.2 Class VI
- Boilers Safety Association Approved (CRN-0C0765-2)
- Face-to-face dimension API609, IS05752 and B16.10

#### **Disc Seal**

Valve closure is always positive. This unique metal disc seal design allows the seal to move clear of the seat at all points without jamming and is particularly good for frequent cycling operations. There are no elastomeric seal parts, thus the Score-TRICENTRIC<sup>®</sup> seal is inherently firesafe and can handle continuous temperatures of -425° F to 1200° F.





| 7 |
|---|
| 7 |
| 8 |
| 8 |
| 8 |
| 9 |
| 9 |
|   |

#### **CLASS 150**

| Sizes 3" - 24", Dimensions                      | 10 |
|-------------------------------------------------|----|
| Sizes 30" - 60", Dimensions                     | 11 |
| Standard Materials of Construction, 3" thru 60" | 12 |
| Design Characteristics                          | 13 |

#### **CLASS 300**

| Sizes 3" - 24", Dimensions          |              | 14 |
|-------------------------------------|--------------|----|
| Sizes 30" - 42", Dimensions         |              | 15 |
| Standard Materials of Construction, | 3" thru 24"  | 16 |
| Standard Materials of Construction, | 30" thru 42" | 17 |
| Design Characteristics              |              | 18 |

#### **CLASS 600**

| Sizes 6" - 24", Dimensions                      | 19 |
|-------------------------------------------------|----|
| Standard Materials of Construction, 6" thru 24" | 20 |
| Design Characteristics                          | 21 |

#### ANSI AND DIN VALVE DATA

| Weights                                   | 22 |
|-------------------------------------------|----|
| Cv Values                                 | 22 |
| Typical Flow Characteristics              | 22 |
|                                           |    |
| TORQUE REQUIREMENTS                       | 23 |
| ACTUATOR MOUNTING DATA                    |    |
| ANSI CLASS 150                            | 24 |
| ANSI CLASS 300                            |    |
| ANSI CLASS 600                            | 26 |
|                                           | ~7 |
| MATERIAL PRESSURE AND TEMPERATURE RATINGS |    |
| GENERAL CORROSION DATA                    |    |
| REQUEST FOR QUOTATION                     |    |
| VALUE MODEL NUMBERING SYSTEM              | 32 |
|                                           |    |



The Score-TRICENTRIC<sup>®</sup> High Performance Butterfly Valve has been a leader in performance and reliable service since it was originally designed in 1975. Its unique high quality design, dependable service in sensitive situations, and positive non-binding patented sealing system have enabled the Score-TRICENTRIC<sup>®</sup> valve to cover a broad range of applications in nearly every industry.

Built for dependability and severe service, Score-TRICENTRIC<sup>®</sup> valves have proven themselves time and time again, to become the first choice on many approved vendor lists across the continent.

SCORE ENERGY PRODUCTS INC., manufactures the Score-TRICENTRIC<sup>®</sup> valve in Alberta, Canada. The Score-TRICENTRIC<sup>®</sup> valve is built to exacting standards, and exciting new designs have increased the opportunities for use of Score-TRICENTRIC<sup>®</sup> design. Standard 3" to 60" 150 ANSI, 3" to 42" 300 ANSI, and 6" to 24" 600 ANSI class valves are now being built in Alberta, with many optional features for custom applications. Unique and sensitive applications are a specialty for the Score-TRICENTRIC<sup>®</sup> team, and we can build custom specialty valves where required.

# **STANDARD OPTIONS AVAILABLE**

| Cryogenic servicesee                                      | Score | Bulletin | 101 |
|-----------------------------------------------------------|-------|----------|-----|
| High temperature servicesee                               | Score | Bulletin | 102 |
| Reduced port applicationssee                              | Score | Bulletin | 103 |
| Reduced pressure classes (EG/CL900x300, CL900x600)see     | Score | Bulletin | 104 |
| Steam jacketed body, steam traced shaft or discsee        | Score | Bulletin | 105 |
| Standard gear operator dimensions and datasee             | Score | Bulletin | 106 |
| Live loaded packing/Fugitive emission controlsee          | Score | Bulletin | 107 |
| Special Bearing Designs - Seal, purge, and lubricationsee | Score | Bulletin | 108 |
| Blow out proof design per API 609 - 5th Editionsee        | Score | Bulletin | 109 |
| Block and bleed servicesee                                | Score | Bulletin | 110 |



# **Score-TRICENTRIC®** High Performance Butterfly Valves

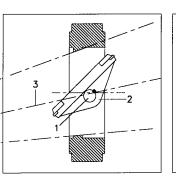
A primary consideration in the selection of high performance valves is the ability to provide tight shutoff. Because of the unique design, Score-TRICENTRIC<sup>®</sup> valves are able to cover a broad range of applications in nearly every industry. Built for services that demand performance in the chemical processing, petroleum, pulp and paper, refinery, steel and utility industries, Score-TRICENTRIC<sup>®</sup> as a standard combines performance and dependability. As a precision machined valve, it is able to provide positive shutoff in vacuum services and pressures to 1480 psi (100 BAR). The patented sealing system has been the subject of extensive testing under carefully controlled conditions in our testing lab and at independent labs.\*

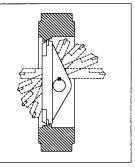
\* For copies of test reports, contact SCORE's Sales Department.

# Off-the shelf features that mean reliable service . . .

- 1. A metal to metal sealing system so unique it's patented.
- Standard valve is of API 607 fire tested design and constructed of NACE MR0175 compliant materials.
- 3. Seal stack is stainless steel laminated with non-asbestos gasketing material in disc.
- 4. The shaft is keyed to the disc and operator for improved operational reliability.
- 5. Annular key is connected to the shaft and locked in place, preventing stem blowout.
- 6. Torque seated, self compensating for temperature variances and no chance of override no matter how fast the closure rate.

- 7. Score-TRICENTRIC<sup>®</sup> geometry minimizes seat wear by eliminating interference.
- Lugged, plain wafer and double flanged styles sizes 3" - 60" ANSI Class 150, 300 & 600. 80 - 1500 mm, 16 - 100 BAR. Larger sizes and pressures as noted or per applications.
- 9. Excellent flow, throttling and shut off characteristics, covering a wide range of applications, cryogenic to high temperature.
- 10. Meets API-609, MSS-SP-68 and ISO 5752 face to face dimensions.
- 11. Score-TRICENTRIC<sup>®</sup> valves are designed for bi-directional service at full body rating.


- Shell tested to ANSI, MSS & API standards. Seat leakage tested to: API 598 zero leakage, ANSI/FCI 70-2, API 6D.
- 13. Efficient operation with worm gear, electric, pneumatic or hydraulic actuators.
- 14. Gasket surface is uninterrupted by seat/seal retainer bolt holes.
- 15. Canadian Boiler Safety Association registered valve design CRN 0C0765.2
- 16. All valves manufactured under an ISO registered quality assurance program.


# **Score-TRICENTRIC®** Sealing System

#### The only patented valve with 3-way eccentricity

- 1. The shaft is located behind the sealing surface of the disc.
- 2. The shaft is below the centerline of the disc.
- 3. The cone axis is offset from the centerline of the disc.

N......







RE SCORE ENERGY PRODUCTS INC.

# The Score-TRICENTRIC® Seal

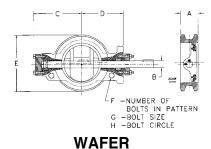
Various disc seals are available for different temperature and service applications for Score-TRICENTRIC<sup>®</sup> valves. Solid metal seals are often used for temperatures above 950° F and up to 1500° F. Most frequently used is the laminated stainless steel seal, which consists of thin, stainless metal laminations with an intermediate gasketing material. Grafoil or Klingersil C4401 are used for laminating. The laminated seal is secured to the disc with a bolt-on steel clamp ring, and is easily accessible for replacement, if required. The Grafoil laminated seal stack is suitable for temperatures of -40° F and up to 1200° F (depending on application). Klingersil C4401 laminated seal stacks are also available, when required, by application.

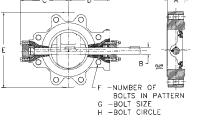
The ultimate benefit of the Score-TRICENTRIC<sup>®</sup> seal is a tight shut-off. The Score-TRICENTRIC<sup>®</sup> seal leakage meets or exceeds ANSI FCI-70-2-1991, API 598 or API 6D and the Score-TRICENTRIC<sup>®</sup> valve is designed for bi-directional tight shut-off.

Under some severe and extreme conditions involving foreign matter in the line the seal stack may become damaged, but will still exhibit a very good sealing result. Unlike rubber-seated valves, any damage to the seal would not tend to worsen and cause the valve to fail completely. Any minor leakage problems can be rectified during the next scheduled shutdown by simply replacing the seal stack. From a maintenance standpoint, the cost of unscheduled shut-downs can be drastically reduced.

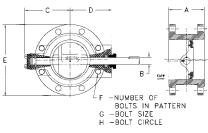
These features coupled with its unique sealing system allow for the use of the Score-TRICENTRIC<sup>®</sup> valve in many varied applications.

# The Score-TRICENTRIC® Standard of Quality


Score Energy Products Inc. manufactures the Score-TRICENTRIC<sup>®</sup> valve under a quality assurance program registered to the ISO 9000 series. Fire tested and approved to API 607 4<sup>th</sup> Edition, registered and approved by Boilers Safety Association (CRNOCO765-2).


In addition to standard dimensional inspection, visual inspection and pressure tests, supplementary examinations can be performed by qualified personnel for liquid penetrant and magnetic particle testing. Standard traceability of parts includes pressure retaining components and the valve shaft, with complete traceability available by request.




# **Score-TRICENTRIC®** Metal Seated High Performance Butterfly Valves

Class 150 - Sizes 3"- 24"



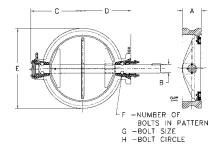


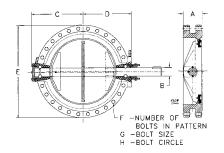
LUGGED

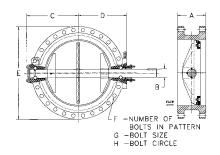


**DOUBLE FLANGE** 

#### **DIMENSIONS**


| Valve<br>Size | Style                            | A<br>in.                                                                                            | B<br>in. | C<br>in.                         | D<br>in.                         | E<br>in.                   | F<br>no. | G<br>size. | H<br>in. | Approximate<br>Weight<br>Ibs. | Cv     |
|---------------|----------------------------------|-----------------------------------------------------------------------------------------------------|----------|----------------------------------|----------------------------------|----------------------------|----------|------------|----------|-------------------------------|--------|
| 3             | Wafer<br>Lugged<br>Double Flange | 1 7/8<br>1 7/8<br>4 1/2                                                                             | 3⁄4      | 4 1⁄2                            | 4 ¾                              | 7 ½                        | 4        | ⁵⁄s"-11    | 6        | 20<br>20<br>34                | 188    |
| 4             | Wafer<br>Lugged<br>Double Flange | 2 1/8<br>2 1/8<br>5                                                                                 | 7/8      | 5 1⁄2                            | 5 ½                              | 6 ¾<br>9<br>9              | 8        | %"-11      | 7½       | 24<br>31<br>50                | 343    |
| 6             | Wafer<br>Lugged<br>Double Flange | 2 ¼<br>2 ¼<br>5 ½                                                                                   | 1 1⁄8    | 6 ½                              | 6 ½                              | 8 %<br>11<br>11            | 8        | ³∕₄"- 10   | 9½       | 37<br>44<br>72                | 930    |
| 8             | Wafer<br>Lugged<br>Double Flange | 2 ½<br>2 ½<br>6                                                                                     | 1 ¼      | 7 ¾                              | 7 %                              | 10                         | 8        | ³∕₄"- 10   | 11¾      | 56<br>68<br>111               | 1,812  |
| 10            | Wafer<br>Lugged<br>Double Flange | 2 <sup>13</sup> / <sub>16</sub><br>2 <sup>13</sup> / <sub>16</sub><br>6 <sup>1</sup> ⁄ <sub>2</sub> | 1 ½      | 9                                | 9 ¾                              | 13 ¼<br>16<br>16           | 12       | 7∕8"- 9    | 14¼      | 88<br>107<br>161              | 2,750  |
| 12            | Wafer<br>Lugged<br>Double Flange | 3 <sup>3</sup> / <sub>16</sub><br>3 <sup>3</sup> / <sub>16</sub><br>7                               | 1 5⁄⁄8   | 10 ½                             | 10 ½                             | 16<br>19<br>19             | 12       | ²⁄₀"- 9    | 17       | 135<br>175<br>238             | 3,900  |
| 14            | Wafer<br>Lugged<br>Double Flange | 3 5%<br>3 5%<br>7 ½                                                                                 | 1 ¾      | 11 ½                             | 11 <sup>5</sup> / <sub>16</sub>  | 17 %<br>21<br>21           | 12       | 1"- 8      | 18¾      | 181<br>235<br>315             | 5,515  |
| 16            | Wafer<br>Lugged<br>Double Flange | 4<br>4<br>8 ½                                                                                       | 2        | 12 <sup>13</sup> / <sub>16</sub> | 12 1⁄2                           | 20 1/8<br>23 1/2<br>23 1/2 | 16       | 1"- 8      | 21¼      | 270<br>330<br>410             | 8,440  |
| 18            | Wafer<br>Lugged<br>Double Flange | 4 ½<br>4 ½<br>8 ¾                                                                                   | 2 1⁄4    | 13 <sup>9</sup> / <sub>16</sub>  | 13 <sup>13</sup> / <sub>16</sub> | 21 ½<br>25<br>25           | 16       | 11⁄8"- 8   | 22¾      | 330<br>404<br>515             | 11,285 |
| 20            | Wafer<br>Lugged<br>Double Flange | 5<br>5<br>9                                                                                         | 2 1⁄2    | 14 %                             | 15 <sup>3</sup> / <sub>16</sub>  | 23 ¾<br>27 ½<br>27 ½       | 20       | 11⁄a"- 8   | 25       | 450<br>560<br>610             | 14,092 |
| 24            | Wafer<br>Lugged<br>Double Flange | 6 <sup>1</sup> / <sub>16</sub><br>6 <sup>1</sup> / <sub>16</sub><br>10 ½                            | 3        | 17 ½                             | 18 ³/ <sub>16</sub>              | 28 ½<br>32<br>32           | 20       | 1¼"- 8     | 29½      | 662<br>878<br>900             | 20,587 |


Dimensions & Weights subject to change without notice. Consult Score Energy Products for confirmation.




# Score-TRICENTRIC® Metal Seated High Performance Butterfly Valves

Class 150 - Sizes 30"- 60"







WAFER

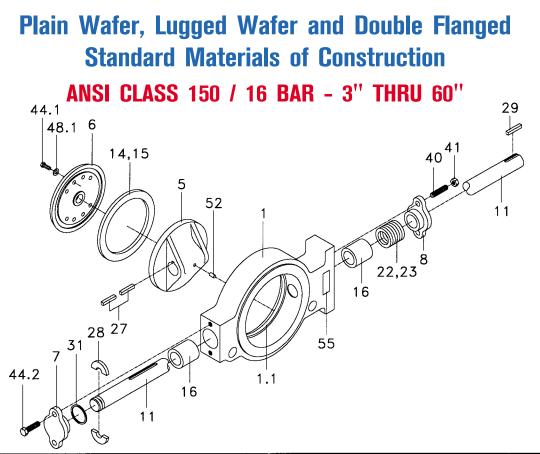
LUGGED

#### DOUBLE FLANGE

#### **DIMENSIONS**

|               |                                           |                                                                         |          |                                  |                                  |                                                                | Series A |            |                    |                               |                                                                                            |          | Series B   |                                 |                               |         |  |
|---------------|-------------------------------------------|-------------------------------------------------------------------------|----------|----------------------------------|----------------------------------|----------------------------------------------------------------|----------|------------|--------------------|-------------------------------|--------------------------------------------------------------------------------------------|----------|------------|---------------------------------|-------------------------------|---------|--|
| Valve<br>Size | Style                                     | A<br>in.                                                                | B<br>in. | C<br>in.                         | D<br>in.                         | E<br>in.                                                       | F<br>no. | G<br>size. | H<br>in.           | Approximate<br>Weight<br>Ibs. | E<br>in.                                                                                   | F<br>no. | G<br>size. | H<br>in.                        | Approximate<br>Weight<br>Ibs. | Cv      |  |
| 30            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. | 6 <sup>5</sup> ⁄8<br>12 <sup>1</sup> ⁄2<br>15                           | 3        | 20 7⁄8                           | 20 <sup>5</sup> / <sub>16</sub>  | 33 <sup>3</sup> ⁄4<br>38 <sup>3</sup> ⁄4<br>38 <sup>3</sup> ⁄4 | 28       | 1¼         | 36                 | 1110<br>1350<br>1800<br>*     | 32<br>34 <sup>15</sup> / <sub>16</sub><br>34 <sup>15</sup> / <sub>16</sub>                 | 44       | 3/4        | 33 <sup>5</sup> / <sub>16</sub> | 1000<br>1080<br>*<br>*        | 33,700  |  |
| 36            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. | 8<br>13<br>13                                                           | 31⁄2     | 24 <sup>7</sup> / <sub>16</sub>  |                                  | 40 ¼<br>46<br>46                                               | 32       | 11⁄2       | 42 <sup>3</sup> ⁄4 | 1780<br>2250<br>2550<br>*     | 38 1⁄4<br>41 5⁄8<br>41 5⁄8                                                                 | 44       | 7⁄8        | 39 <sup>3</sup> ⁄4              | 1680<br>1700<br>*<br>*        | 50,470  |  |
| 40            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. | 8 <sup>9</sup> / <sub>16</sub><br>16 <sup>3</sup> / <sub>16</sub><br>15 | 3 3/4    | 27 <sup>3</sup> ⁄4               |                                  | 44 ¼<br>50 ¾<br>50 ¾                                           | 36       | 1½         | 47¼                | 2250<br>3200<br>3500          | 42 ½<br>46 ¼<br>46 ¼                                                                       | 44       | 1          | 44 <sup>1</sup> ⁄8              | 2150<br>2600<br>*             | 64,000  |  |
| 42            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. | 8 5⁄8<br>16 <sup>3</sup> / <sub>16</sub><br>15                          | 4        | 27 <sup>15</sup> / <sub>16</sub> | 27 <sup>11</sup> / <sub>16</sub> | 47<br>53<br>53                                                 | 36       | 1½         | 491⁄2              | 2900<br>3600<br>3900<br>*     | 44 <sup>1</sup> /2<br>48 <sup>1</sup> /4<br>48 <sup>1</sup> /4                             | 48       | 1          | 46 <sup>1</sup> ⁄8              | 2720<br>2950<br>*             | 71,100  |  |
| 46            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. | 10<br>18 <sup>9</sup> / <sub>16</sub><br>15                             | 43/4     | 31 <sup>5</sup> / <sub>16</sub>  | 32                               | 51<br>57 ¼<br>57 ¼                                             | 40       | 11⁄2       | 53 <b>3</b> ⁄4     | 3300<br>4550<br>4700<br>*     | 48 <sup>5</sup> /8<br>52 <sup>13</sup> / <sub>16</sub><br>52 <sup>13</sup> / <sub>16</sub> | 40       | 11⁄8       | 50 <sup>9</sup> / <sub>16</sub> | 3200<br>3800<br>*             | 87,300  |  |
| 48            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. | 9 5⁄8<br>18 <sup>9</sup> / <sub>16</sub><br>15                          | 41/2     | 31 ¼                             | 31 <sup>1</sup> ⁄8               | 53 ½<br>59 ½<br>59 ½                                           | 44       | 1½         | 56                 | 3900<br>5000<br>5200<br>*     | 50 <sup>3</sup> ⁄4<br>54 <sup>13</sup> / <sub>16</sub><br>54 <sup>13</sup> / <sub>16</sub> | 44       | 11⁄8       | 52 <sup>9</sup> / <sub>16</sub> | 3700<br>4250<br>*<br>*        | 95,740  |  |
| 54            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. |                                                                         | 41⁄4     | 35 <del>5</del> ⁄8               | 36 ½                             | 59 ½<br>66 ¼<br>66 ¼                                           | 44       | 13⁄4       | 62 <b>¾</b>        | 5500<br>7000<br>6500          | 56 <sup>3</sup> ⁄4<br>61<br>61                                                             | 56       | 11⁄8       | 58 ¾                            | 4900<br>5800<br>*             | 120,750 |  |
| 60            | Wafer<br>Lug<br>Double ISO<br>Flange Opt. |                                                                         | 6        | 42 <sup>3</sup> ⁄8               | 41 5⁄8                           | 66<br>73<br>73                                                 | 52       | 13⁄4       | 69¼                | 7100<br>9200<br>8000<br>*     | 63<br>67 <sup>15</sup> / <sub>16</sub><br>67 <sup>15</sup> / <sub>16</sub>                 | 52       | 1¼         | 65 <sup>7</sup> / <sub>16</sub> | 6400<br>7600<br>*             | 147,000 |  |

ISO = represents ISO 5752 short face-to-face


Opt = represents Manufacturers optional face-to-face

\*Consult Score Energy Products Inc.

**SC** ALVES

Dimensions & Weights subject to change without notice. Consult Score Energy Products for confirmation.





| item # | Description     | Carbon Steel                                   | 316 Stainless Steel                     | ltem # | Description                    | Carbon Steel                                    | 316 Stainless Steel                             |
|--------|-----------------|------------------------------------------------|-----------------------------------------|--------|--------------------------------|-------------------------------------------------|-------------------------------------------------|
| 1      | Body            | Carbon Steel/A216 GR<br>WCB with Integral Seat | 316 SST/A351 GR CF8M with Integral Seat | 23     | Braided End<br>Ring            | John Crane 387-i                                | John Crane 387-I                                |
| 1.1    | Seat            | Integral w/body, w/316<br>overlay              | Integral w/body                         | 27     | Disc Key                       | 316 SST                                         | 316 SST                                         |
| 5      | Disc            | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 28     | Annular Key                    | A312 TP 316/Nitronic 60                         | A312 TP 316/Nitronic 60                         |
| 6      | Clamp Ring      | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 29     | Actuator Key                   | C1045                                           | C1045                                           |
| 7      | Cover Plate     | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 31     | Metal<br>O'Ring/Flex<br>Gasket | Inconel 600 w/silver<br>plate/316 SST w/Grafoil | Inconel 600 w/silver<br>plate/316 SST w/Grafoil |
| 8      | Packing Gland   | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 40     | Stud                           | 316 SST                                         | 316 SST                                         |
| 11     | Shaft           | 17-4PH Double H1150<br>A564 T 630              | 17-4PH Double H1150<br>A564 T 630       | 41     | Hex Nut                        | 316 SST                                         | 316 SST                                         |
| 14     | Seal Stack      | 316 SST/Grafoil                                | 316 SST/Grafoil                         | 44.1   | Disc Hex<br>Head Cap<br>Screw  | 316 SST                                         | 316 SST                                         |
| 15     | Bottom Gasket   | Grafoil                                        | Grafoil                                 | 44.2   | Cover Hex<br>Head Cap<br>Screw | B8M                                             | B8M                                             |
| 16     | Bearing         | Carbon                                         | Carbon                                  | 48.1   | Disc Lock<br>Washer            | 316 SST                                         | 316 SST                                         |
| 22     | Packing Grafoil | John Crane 235/Grafoil                         | John Crane235/Grafoil                   | 52     | Pin                            | 316 SST                                         | 316 SST                                         |
|        |                 |                                                |                                         | 55     | Serial Plate                   | 304 SST                                         | 304 SST                                         |

#### Note:

Please contact Score Energy Products Inc. for the many optional materials that are available to meet your specific application.

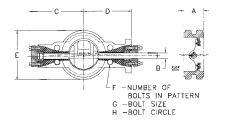


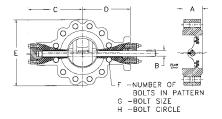
# Score-TRICENTRIC® Design Characteristics - Class 150

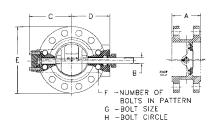
| PRESSURE/TEMPERATURE RATING |                        |       |  |  |  |  |  |  |  |
|-----------------------------|------------------------|-------|--|--|--|--|--|--|--|
| Maximum<br>Temperature      | Working Pressure, psig |       |  |  |  |  |  |  |  |
| Of                          | Carbon Steel           | 316SS |  |  |  |  |  |  |  |
| -20 to 100                  | 285                    | 275   |  |  |  |  |  |  |  |
| 200                         | 260                    | 235   |  |  |  |  |  |  |  |
| 300                         | 230                    | 215   |  |  |  |  |  |  |  |
| 400                         | 200                    | 195   |  |  |  |  |  |  |  |
| 500                         | 170                    | 170   |  |  |  |  |  |  |  |
| 600                         | 140                    | 140   |  |  |  |  |  |  |  |
| 650                         | 125                    | 125   |  |  |  |  |  |  |  |
| 700                         | 110                    | 110   |  |  |  |  |  |  |  |
| 750                         | 95                     | 95    |  |  |  |  |  |  |  |
| 800                         | 80                     | 80    |  |  |  |  |  |  |  |
| 850                         | Note A                 | 65    |  |  |  |  |  |  |  |
| 900                         | _                      | 50    |  |  |  |  |  |  |  |
| 950                         |                        | 35    |  |  |  |  |  |  |  |
| 1000                        |                        | 20    |  |  |  |  |  |  |  |

See Note A, B, C

Note:


- A. Permissible, but not recommended for prolonged usage above about 800° F.
- B. These values may be interpolated on a linear scale for shut-off pressures between 150 psi and 285 psi.
- C. Values shown are for preferred direction of shut-off under static differential pressure conditions


| VALVE SEATING/UNSEATING TORQUES |                          |                          |  |  |  |  |  |  |  |
|---------------------------------|--------------------------|--------------------------|--|--|--|--|--|--|--|
| Valve                           | Half-Rated<br>at 150 psi | Full-Rated<br>at 285 psi |  |  |  |  |  |  |  |
| Size                            | inlb.                    | inlb.                    |  |  |  |  |  |  |  |
| 3                               | 812                      | 1540                     |  |  |  |  |  |  |  |
| 4                               | 1165                     | 2210                     |  |  |  |  |  |  |  |
| 6                               | 2209                     | 4190                     |  |  |  |  |  |  |  |
| 8                               | 3144                     | 5965                     |  |  |  |  |  |  |  |
| 10                              | 4585                     | 8700                     |  |  |  |  |  |  |  |
| 12                              | 9434                     | 17900                    |  |  |  |  |  |  |  |
| 14                              | 11753                    | 22300                    |  |  |  |  |  |  |  |
| 16                              | 14809                    | 28100                    |  |  |  |  |  |  |  |
| 18                              | 19773                    | 37520                    |  |  |  |  |  |  |  |
| 20                              | 25797                    | 48950                    |  |  |  |  |  |  |  |
| 24                              | 28037                    | 53200                    |  |  |  |  |  |  |  |
| 30                              | 70000                    | 112000                   |  |  |  |  |  |  |  |
| 36                              | 100000                   | 160000                   |  |  |  |  |  |  |  |
| 40                              | 122000                   | 214000                   |  |  |  |  |  |  |  |
| 42                              | 135000                   | 220000                   |  |  |  |  |  |  |  |
| 46                              | 173000                   | 303000                   |  |  |  |  |  |  |  |
| 48                              | 182000                   | 320000                   |  |  |  |  |  |  |  |
| 54                              | 193000                   | -                        |  |  |  |  |  |  |  |
| 60                              | 320000                   | _                        |  |  |  |  |  |  |  |




# Score-TRICENTRIC® Metal Seated High Performance Butterfly Valves

#### Class 300 - Sizes 3"- 24"







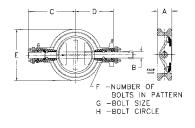
WAFER

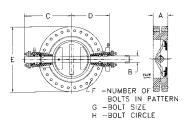
LUGGED

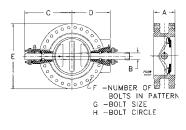
#### DOUBLE FLANGE

#### DIMENSIONS

| Valve<br>Size | Style                            | A<br>in.                                                                                          | B<br>in. | C<br>in.                                                                                                 | D<br>in.                                                                                              | E<br>in.                                                                                          | F<br>no. | G<br>size.          | H<br>in. | Approximate<br>Weight<br>Ibs. | Cv     |
|---------------|----------------------------------|---------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|---------------------|----------|-------------------------------|--------|
| 3             | Wafer<br>Lugged<br>Double Flange | 1 7/8<br>1 7/8<br>4 1/2                                                                           | 3/4      | 6 <sup>3</sup> / <sub>4</sub><br>6 <sup>3</sup> / <sub>4</sub><br>5                                      | 6                                                                                                     | 5 <sup>3</sup> ⁄4<br>8 <sup>1</sup> ⁄8<br>8 <sup>1</sup> ⁄8                                       | 8        | ³∕₄"- 10            | 6        | 30<br>34<br>65                | 188    |
| 4             | Wafer<br>Lugged<br>Double Flange | 2 1⁄8<br>2 1⁄8<br>5                                                                               | 7⁄8      | 7 <sup>7</sup> /8<br>7 <sup>7</sup> /8<br>5 <sup>7</sup> /8                                              | 7 ¼<br>7 ¼<br>5 %                                                                                     | 7<br>9 ¾<br>9 ¾                                                                                   | 8        | ³∕₄"- 10            | 71⁄8     | 40<br>47<br>85                | 343    |
| 6             | Wafer<br>Lugged<br>Double Flange | 2 <sup>5</sup> / <sub>16</sub><br>2 <sup>5</sup> / <sub>16</sub><br>5 <sup>1</sup> / <sub>2</sub> | 1 ¼      | 9 <sup>3</sup> / <sub>16</sub><br>9 <sup>3</sup> / <sub>16</sub><br>7 <sup>1</sup> / <sub>8</sub>        | 8 <sup>3</sup> / <sub>4</sub><br>8 <sup>3</sup> / <sub>4</sub><br>7 <sup>1</sup> / <sub>8</sub>       | 9 <sup>3</sup> ⁄ <sub>4</sub><br>12 <sup>1</sup> ⁄ <sub>8</sub><br>12 <sup>1</sup> ⁄ <sub>8</sub> | 12       | ³∕₄"- 10            | 10 %     | 62<br>76<br>120               | 868    |
| 8             | Wafer<br>Lugged<br>Double Flange | 2 <sup>7</sup> ⁄8<br>2 <sup>7</sup> ⁄8<br>6                                                       | 1 1⁄2    | 10<br>10<br>8 <sup>9</sup> / <sub>16</sub>                                                               | 10<br>10<br>8 7⁄8                                                                                     | 12<br>14¾<br>14¾                                                                                  | 12       | <sup>7</sup> ⁄8"- 9 | 13       | 108<br>133<br>186             | 1,678  |
| 10            | Wafer<br>Lugged<br>Double Flange | 3 1/4<br>3 1/4<br>6 1/2                                                                           | 1 5⁄8    | 11 5⁄8<br>11 5⁄8<br>9 1⁄8                                                                                | 11 ¼<br>11 ¼<br>9 ¾                                                                                   | 14 1⁄8<br>17 1∕₄<br>17 1∕₄                                                                        | 16       | 1"- 8               | 15 ¼     | 151<br>193<br>260             | 2,500  |
| 12            | Wafer<br>Lugged<br>Double Flange | 3 <sup>5</sup> ⁄8<br>3 <sup>5</sup> ⁄8<br>7                                                       | 1 ¾      | 12 1⁄8<br>12 1⁄8<br>11 <sup>5</sup> / <sub>16</sub>                                                      | 11 <sup>9</sup> / <sub>16</sub><br>11 <sup>9</sup> / <sub>16</sub><br>11 <sup>1</sup> / <sub>16</sub> | 16 ½<br>20<br>20                                                                                  | 16       | 1 1⁄8"- 8           | 17 ¾     | 240<br>258<br>375             | 3,510  |
| 14            | Wafer<br>Lugged<br>Double Flange | 4 5⁄8<br>4 5⁄8<br>7 1⁄2                                                                           | 2 ¼      | 13 5⁄8<br>13 5⁄8<br>12 7⁄8                                                                               | 14 <sup>3</sup> / <sub>16</sub><br>14 <sup>3</sup> / <sub>16</sub><br>13 <sup>9</sup> / <sub>16</sub> | 18                                                                                                | 20       | 1 1⁄8"- 8           | 20 ¼     | 360<br>456<br>600             | 4,942  |
| 16            | Wafer<br>Lugged<br>Double Flange | 5 ¼<br>5 ¼<br>8 ½                                                                                 | 2 1⁄2    | 14 <sup>13</sup> / <sub>16</sub><br>14 <sup>13</sup> / <sub>16</sub><br>14 <sup>1</sup> / <sub>16</sub>  | 15 ½<br>15 ½<br>15                                                                                    | 21<br>25 ¼<br>25 ¼                                                                                | 20       | 1 ¼"- 8             | 22 1⁄2   | 420<br>610<br>770             | 7,596  |
| 18            | Wafer<br>Lugged<br>Double Flange | 5 <sup>7</sup> /8<br>5 <sup>7</sup> /8<br>8 <sup>3</sup> /4                                       | 2 ¾      | 16 %<br>16 %<br>15 ¼                                                                                     | 17 %<br>17 %<br>16 %                                                                                  | 23 1/8<br>27 3/8<br>27 3/8                                                                        | 24       | 1 ¼"- 8             | 24 ¾     | 556<br>900<br>1000            | 10,394 |
| 20            | Wafer<br>Lugged<br>Double Flange | 6 ¼<br>6 ¼<br>9                                                                                   | 3        | 17 <sup>3</sup> / <sub>16</sub><br>17 <sup>3</sup> / <sub>16</sub><br>16 <sup>3</sup> ⁄4                 | 17 5⁄8<br>17 5∕8<br>17 3∕8                                                                            | 25 ½<br>30<br>30                                                                                  | 24       | 1 ¼"- 8             | 27       | 700<br>1032<br>1175           | 12,965 |
| 24            | Wafer<br>Lugged<br>Double Flange | 71⁄8<br>71⁄8<br>101⁄2                                                                             | 3½       | 19 <sup>15</sup> / <sub>16</sub><br>19 <sup>15</sup> / <sub>16</sub><br>19 <sup>11</sup> / <sub>16</sub> | 21 3⁄8<br>21 3⁄8<br>21 1⁄8                                                                            | 30 ¼<br>36<br>36                                                                                  | 24       | 1 1⁄2"- 8           | 32       | 1000<br>1650<br>1775          | 18,962 |


Dimensions & Weights subject to change without notice. Consult Score Energy Products for confirmation





Ε

# Score-TRICENTRIC® Metal Seated High Performance Butterfly Valves

Class 300 - Sizes 30"- 42"







WAFER

LUGGED

#### DOUBLE FLANGE

#### DIMENSIONS

|               | ASME B16.47 Series |     |                     |          |                                  |                                  |          | s A      | ASM        | EB       | 16.47                             | Serie    | es B     |            |          |                                   |        |
|---------------|--------------------|-----|---------------------|----------|----------------------------------|----------------------------------|----------|----------|------------|----------|-----------------------------------|----------|----------|------------|----------|-----------------------------------|--------|
| Valve<br>Size | Sty                | le  | A<br>in.            | B<br>in. | C<br>in.                         | D<br>in.                         | E<br>in. | F<br>no. | G<br>size. | H<br>in. | Approxi<br>mate<br>Weight<br>Ibs. | E<br>in. | F<br>no. | G<br>size. | H<br>in. | Approxi<br>mate<br>Weight<br>Ibs. | Cv     |
|               | Waf                | fer | 10                  |          |                                  |                                  | 33¾      |          |            |          | 1800                              | 33¼      |          |            |          | *                                 |        |
| 30            | Lugg               | jed | 10                  | 4        | 29 <sup>13</sup> / <sub>16</sub> | 24 <sup>13</sup> / <sub>16</sub> | 43       | 28       | 1¾         | 39¼      | 2950                              | 39       | 36       | 13⁄8       | 36¼      | *                                 | 29,600 |
|               | Doul<br>Flan       |     | 12½                 |          | 18                               | 16                               | 43       |          | .,.        |          | 3150                              | 39       |          |            |          | *                                 | ,      |
|               | Wat                | fer | 12                  |          |                                  |                                  | 40¼      |          |            |          | 3150                              | 39¾      |          |            |          | *                                 |        |
| 36            | Lugg               | jed |                     | 5        | 35 <sup>7</sup> / <sub>16</sub>  | 29 <sup>7</sup> / <sub>16</sub>  | 50       | 32       | 2          | 46       | 4750                              | 461⁄8    | 32       | 15⁄8       | 427/8    | *                                 | 42,700 |
|               | Doul<br>Flan       |     | 13                  |          | 10                               |                                  | 50       |          |            |          | 4900                              | 461⁄/8   |          |            |          | *                                 |        |
|               | Wat                | fer | 103/                |          |                                  |                                  | 44¾      |          |            |          | 4150                              | 46       |          |            |          | *                                 |        |
| 40            | Lugg               | jed | 12¾                 |          | 0713/                            | 0.4.137                          | 50¾      | 00       | AEI        | 471/     | 5350                              | 52½      |          | 43/        | 10       | *                                 | 50 400 |
| 42            | Double             | ISO | 16 ³/ <sub>16</sub> | 5        | 37 <sup>13</sup> / <sub>16</sub> | 31 <sup>13</sup> / <sub>16</sub> | E03/     | 32       | 15⁄8       | 47½      |                                   | 501/     | 36       | 13⁄4       | 49       | *                                 | 58,100 |
|               | Flange             |     | 14¾                 |          |                                  |                                  | 50¾      |          |            |          | 5600                              | 52½      |          |            |          |                                   |        |

ISO = represents ISO 5752 short face-to-face

Opt = represents Manufacturers optional face-to-face

\* Consult Score Energy Products Inc.

Dimensions & Weights subject to change without notice. Consult Score Energy Products for confirmation



# Plain Wafer, Lugged Wafer and Double Flanged Standard Materials of Construction ANSI CLASS 300 / 40 BAR - 3" THRU 24"

1.1

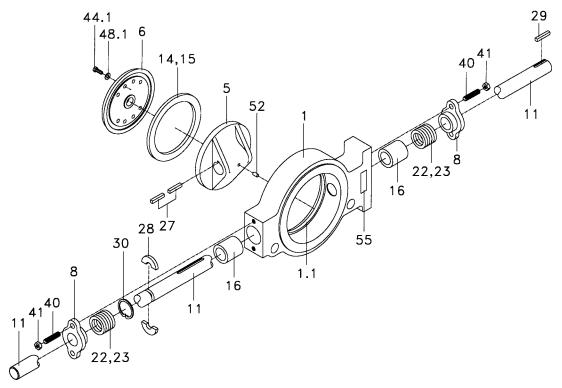
16

11

55

28 27

31


44.2

| ltem # | Description        | Carbon Steel                                   | 316 Stainless Steel                     | Item # | Description                    | Carbon Steel                                    | 316 Stainless Steel                             |
|--------|--------------------|------------------------------------------------|-----------------------------------------|--------|--------------------------------|-------------------------------------------------|-------------------------------------------------|
| 1      | Body               | Carbon Steel/A216 GR<br>WCB with Integral Seat | 316 SST/A351 GR CF8M with Integral Seat | 23     | Braided End<br>Ring            | John Crane 387-I                                | John Crane 387-I                                |
| 1.1    | Seat               | Integral w/body, w/316<br>overlay              | Integral w/body                         | 27     | Disc Key                       | 316 SST                                         | 316 SST                                         |
| 5      | Disc               | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 28     | Annular Key                    | 316 SST/Nitronic 60                             | 316 SST/Nitronic 60                             |
| 6      | Clamp Ring         | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 29     | Actuator Key                   | C1045                                           | C1045                                           |
| 7      | Cover Plate        | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 31     | Metal<br>O'Ring/Flex<br>Gasket | Inconel 600 w/silver<br>plate/316 SST w/Grafoil | Inconel 600 w/silver<br>plate/316 SST w/Grafoil |
| 8      | Packing Gland      | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 40     | Stud                           | 316 SST                                         | 316 SST                                         |
| 11     | Shaft              | 17-4PH Double H1150<br>A564 T 630              | 17-4PH Double H1150<br>A564 T 630       | 41     | Hex Nut                        | 316 SST                                         | 316 SST                                         |
| 14     | Seal Stack         | 316 SST/Grafoil                                | 316 SST/Grafoil                         | 44.1   | Disc Hex Head<br>Cap Screw     | 316 SST                                         | 316 SST                                         |
| 15     | Bottom Gasket      | Grafoil                                        | Grafoil                                 | 44.2   | Cover Hex Head<br>Cap Screw    | B8M                                             | B8M                                             |
| 16     | Bearing            | Nitronic 60                                    | Nitronic 60                             | 48.1   | Disc Lock<br>Washer            | 316 SST                                         | 316 SST                                         |
| 22     | Packing<br>Grafoil | John Crane 235/Grafoil                         | John Crane 235/Grafoil                  | 52     | Pin                            | 316 SST                                         | 316 SST                                         |
|        |                    |                                                |                                         | 55     | Serial Plate                   | 304 SST                                         | 304 SST                                         |

Note: Please contact Score Energy Products Inc. for the many optional materials that are available to meet your specific application.



# Plain Wafer, Lugged Wafer and Double Flanged Standard Materials of Construction ANSI CLASS 300 / 40 BAR - 30" THRU 42"



| ltern # | Description        | Carbon Steel                                   | 316 Stainless Steel                     | ltem # | Description                | Carbon Steel     | 316 Stainless Steel |
|---------|--------------------|------------------------------------------------|-----------------------------------------|--------|----------------------------|------------------|---------------------|
| 1       | Body               | Carbon Steel/A216 GR<br>WCB with Integral Seat | 316 SST/A351 GR CF8M with Integral Seat | 23     | Braided End<br>Ring        | John Crane 387-1 | John Crane 387-I    |
| 1.1     | Seat               | Integral w/body, w/316<br>overlay              | integral w/body                         | 27     | Disc Key                   | 316 SST          | 316 SST             |
| 5       | Disc               | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 28     | Annular Key                | Nitronic 60      | Nitronic 60         |
| 6       | Clamp Ring         | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 29     | Actuator Key               | C1045            | C1045               |
| 8       | Packing Gland      | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                    | 30     | Retaining Ring             | Alloy Steel      | Stainless Steel     |
| 11      | Shaft              | 17-4PH Double H1150<br>A564 T 630              | 17-4PH Double H1150<br>A564 T 630       | 40     | Stud                       | 316 SST          | 316 SST             |
| 14      | Seal Stack         | 316 SST/Grafoil                                | 316 SST/Grafoil                         | 41     | Hex Nut                    | 316 SST          | 316 SST             |
| 15      | Bottom Gasket      | Grafoil                                        | Grafoil                                 | 44.1   | Disc Hex Head<br>Cap Screw | 316 SST          | 316 SST             |
| 16      | Bearing            | Nitronic 60                                    | Nitronic 60                             | 48.1   | Disc Lock<br>Washer        | 316 SST          | 316 SST             |
| 22      | Packing<br>Grafoil | John Crane 235/Grafoil                         | John Crane 235/Grafoil                  | 52     | Pin                        | 316 SST          | 316 SST             |
|         |                    |                                                |                                         | 55     | Serial Plate               | 304 SST          | 304 SST             |

Note: Please contact Score Energy Products Inc. for the many optional materials that are available to meet your specific application.



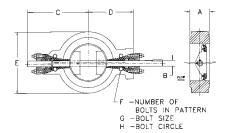
# **Score-TRICENTRIC®**

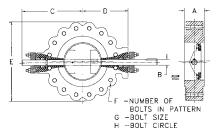
# **Design Characteristics - Class 300**

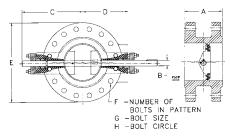
| PRESSURE/TEMPERATURE RATING |              |              |  |  |  |  |  |  |  |  |
|-----------------------------|--------------|--------------|--|--|--|--|--|--|--|--|
| Maximum<br>Temperature      | Working Pre  | essure, psig |  |  |  |  |  |  |  |  |
| Of                          | Carbon Steel | 316SS        |  |  |  |  |  |  |  |  |
| -20 to 100                  | 740          | 720          |  |  |  |  |  |  |  |  |
| 200                         | 675          | 620          |  |  |  |  |  |  |  |  |
| 300                         | 655          | 560          |  |  |  |  |  |  |  |  |
| 400                         | 635          | 515          |  |  |  |  |  |  |  |  |
| 500                         | 600          | 480          |  |  |  |  |  |  |  |  |
| 600                         | 550          | 450          |  |  |  |  |  |  |  |  |
| 650                         | 535          | 445          |  |  |  |  |  |  |  |  |
| 700                         | 535          | 430          |  |  |  |  |  |  |  |  |
| 750                         | 505          | 425          |  |  |  |  |  |  |  |  |
| 800                         | 410          | 420          |  |  |  |  |  |  |  |  |
| 850                         | Note A       | 420          |  |  |  |  |  |  |  |  |
| 900                         | _            | 415          |  |  |  |  |  |  |  |  |
| 950                         | _            | 385          |  |  |  |  |  |  |  |  |
| 1000                        | _            | 350          |  |  |  |  |  |  |  |  |
| 1050                        | _            | 345          |  |  |  |  |  |  |  |  |
| 1100                        | _            | 305          |  |  |  |  |  |  |  |  |
| 1150                        | _            | 235          |  |  |  |  |  |  |  |  |
| 1200                        | _            | 185          |  |  |  |  |  |  |  |  |
| 1250                        | _            | 145          |  |  |  |  |  |  |  |  |
| 1300                        | _            | 115          |  |  |  |  |  |  |  |  |
| 1350                        | _            | 95           |  |  |  |  |  |  |  |  |
| 1400                        | _            | 75           |  |  |  |  |  |  |  |  |
| 1450                        | _            | 60           |  |  |  |  |  |  |  |  |
| 1500                        | _            | 40           |  |  |  |  |  |  |  |  |

| VALVE SEATING/UNSEATING TORQUES |                          |                       |  |  |  |  |  |  |  |  |  |
|---------------------------------|--------------------------|-----------------------|--|--|--|--|--|--|--|--|--|
| Valve                           | Half-Rated<br>at 370 psi | Full-Rated at 740 psi |  |  |  |  |  |  |  |  |  |
| Size                            | inlb.                    | inlb.                 |  |  |  |  |  |  |  |  |  |
| 3                               | 1200                     | 2400                  |  |  |  |  |  |  |  |  |  |
| 4                               | 1750                     | 3500                  |  |  |  |  |  |  |  |  |  |
| 6                               | 3650                     | 7300                  |  |  |  |  |  |  |  |  |  |
| 8                               | 6650                     | 13300                 |  |  |  |  |  |  |  |  |  |
| 10                              | 8350                     | 16700                 |  |  |  |  |  |  |  |  |  |
| 12                              | 11100                    | 22200                 |  |  |  |  |  |  |  |  |  |
| 14                              | 18400                    | 36800                 |  |  |  |  |  |  |  |  |  |
| 16                              | 27750                    | 55500                 |  |  |  |  |  |  |  |  |  |
| 18                              | 34800                    | 69600                 |  |  |  |  |  |  |  |  |  |
| 20                              | 45850                    | 91700                 |  |  |  |  |  |  |  |  |  |
| 24                              | 77705                    | 155410                |  |  |  |  |  |  |  |  |  |
| 30                              | 146500                   | 293000                |  |  |  |  |  |  |  |  |  |
| 36                              | 234000                   | 468000                |  |  |  |  |  |  |  |  |  |
| 42                              | 355000                   | 710000                |  |  |  |  |  |  |  |  |  |

See Note A, B, C


Note:


- A. Permissible, but not recommended for prolonged usage above about 800° F.
- B. These values may be interpolated on a linear scale for shut-off pressures between 370 psi and 740 psi.
- C. Values shown are for preferred direction of shut-off under static differential pressure conditions




# Score-TRICENTRIC® Metal Seated High Performance Butterfly Valves

Class 600 - Sizes 6"-24"



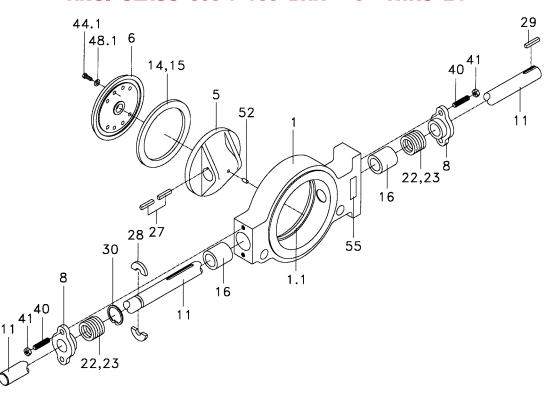




WAFER

LUGGED

#### DOUBLE FLANGE


#### DIMENSIONS

| Valve<br>Size | Style                               | A<br>in.                                                                                           | B<br>in. | C<br>in.                         | D<br>in.                         | E<br>in.                              | F<br>no. | G<br>size.       | H<br>in. | Approximate<br>Weight<br>Ibs. | Cv     |
|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------|----------|----------------------------------|----------------------------------|---------------------------------------|----------|------------------|----------|-------------------------------|--------|
| 6             | Wafer<br>Lugged<br>Double<br>Flange | 3 <sup>9</sup> / <sub>32</sub><br>3 <sup>9</sup> / <sub>32</sub><br>8 <sup>5</sup> / <sub>16</sub> | 1½       | 11 <sup>3</sup> / <sub>16</sub>  | 85⁄8                             | 10<br>14<br>14                        | 12       | 1"- 8            | 11½      | 100<br>124<br>150             | 744    |
| 8             | Wafer<br>Lugged<br>Double<br>Flange | 4<br>4<br>9 <sup>1</sup> / <sub>16</sub>                                                           | 11⁄8     | 123⁄8                            | 9¾                               | 12 ⅓<br>16½<br>16½                    | 12       | 11⁄8"- 8         | 13¾      | 154<br>208<br>250             | 1,450  |
| 10            | Wafer<br>Lugged<br>Double<br>Flange | 45⁄8<br>45⁄8<br>97⁄8                                                                               | 21⁄8     | 141⁄8                            | 11½                              | 15 ½<br>20<br>20                      | 16       | 1¼"- 8           | 17       | 226<br>311<br>340             | 2,125  |
| 12            | Wafer<br>Lugged<br>Double<br>Flange | 6½<br>6½<br>10%                                                                                    | 2¾       | 15 <sup>11</sup> / <sub>16</sub> | 12 <sup>13</sup> / <sub>16</sub> | 17 ¾<br>22<br>22                      | 20       | 1¼"- 8           | 19¼      | 328<br>443<br>550             | 2,730  |
| 14            | Wafer<br>Lugged<br>Double<br>Flange | 67⁄8<br>67⁄8<br>11 <sup>7</sup> / <sub>16</sub>                                                    | 3        | <b>16</b> 5∕%                    | 13¾                              | 19½<br>23¾<br>23¾                     | 20       | 1¾"- 8           | 20¾      | 535<br>735<br>750             | 4,217  |
| 16            | Wafer<br>Lugged<br>Double<br>Flange | 7<br>7<br>12¼                                                                                      | 31⁄8     | 171⁄8                            | 14%                              | 22<br>27<br>27                        | 20       | 1½"- 8           | 23¾      | 700<br>885<br>950             | 6,487  |
| 18            | Wafer<br>Lugged<br>Double<br>Flange | 71⁄8<br>71∕8<br>13                                                                                 | 3¼       | 20 <sup>7</sup> / <sub>16</sub>  | 17 <sup>1</sup> / <sub>16</sub>  | 23 <sup>.7</sup> /8<br>291⁄4<br>291⁄4 | 20       | 1⁵⁄a"- 8         | 25¾      | 950<br>1268<br>1300           | 8,874  |
| 20            | Wafer<br>Lugged<br>Double<br>Flange | 8½<br>8½<br>13 <sup>13</sup> / <sub>16</sub>                                                       | 3½       | 217⁄8                            | 18¾                              | 26½<br>32<br>32                       | 24       | <b>1</b> 5⁄%"- 8 | 28½      | 1040<br>1560<br>1640          | 11,071 |
| 24            | Wafer<br>Lugged<br>Double<br>Flange | 91⁄8<br>91⁄8<br>153⁄8                                                                              | 4        | 23%                              | 201⁄8                            | 30¾<br>37<br>37                       | 24       | 11⁄8"- 8         | 33       | 1820<br>2340<br>2450          | 16,188 |

Dimensions and weights subject to change without notice; consult SCORE Energy Products for confirmation.



# Plain Wafer, Lugged Wafer and Double Flanged Standard Materials of Construction ANSI CLASS 600 / 100 BAR - 6" THRU 24"



| Item<br># | Description        | Carbon Steel                                   | 316 Stainless Steel                        | Item<br># | Description                | Carbon Steel     | 316 Stainless Steel |
|-----------|--------------------|------------------------------------------------|--------------------------------------------|-----------|----------------------------|------------------|---------------------|
| 1         | Body               | Carbon Steel/A216 GR<br>WCB with Integral Seat | 316 SST/A351 GR CF8M<br>with Integral Seat | 23        | Braided End<br>Ring        | John Crane 387-I | John Crane 387-I    |
| 1.1       | Seat               | Integral w/body, w/316<br>overlay              | Integral w/body                            | 27        | Disc Key                   | 316 SST          | 316 SST             |
| 5         | Disc               | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                       | 28        | Annular Key                | Nitronic 60      | Nitronic 60         |
| 6         | Clamp Ring         | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                       | 29        | Actuator Key               | C1045            | C1045               |
| 8         | Packing Gland      | Carbon Steel/A216 GR<br>WCB                    | 316 SST/A351 GR CF8M                       | 30        | Retaining Ring             | Alloy Steel      | Stainless Steel     |
| 11        | Shaft              | 17-4PH Double H1150<br>A564 T 630              | 17-4PH Double H1150<br>A564 T 630          | 40        | Stud                       | 316 SST          | 316 SST             |
| 14        | Seal Stack         | 316 SST/Grafoil                                | 316 SST/Grafoil                            | 41        | Hex Nut                    | 316 SST          | 316 SST             |
| 15        | Bottom Gasket      | Grafoil                                        | Grafoil                                    | 44.1      | Disc Hex Head<br>Cap Screw | 316 SST          | 316 SST             |
| 16        | Bearing            | Nitronic 60                                    | Nitronic 60                                | 48.1      | Disc Lock<br>Washer        | 316 SST          | 316 SST             |
| 22        | Packing<br>Grafoil | John Crane 235/Grafoil                         | John Crane 235/Grafoil                     | 52        | Pin                        | 316 SST          | 316 SST             |

Note: Please contact Score Energy Products Inc. for the many optional materials that are available to meet your specific application.



# Score-TRICENTRIC® Design Characteristics - Class 600

| PRESSUR                | E/TEMPERATUR | E RATING     |
|------------------------|--------------|--------------|
| Maximum<br>Temperature | Working Pre  | essure, psig |
| Of                     | Carbon Steel | 316SS        |
| -20 to 100             | 1480         | 1440         |
| 200                    | 1350         | 1240         |
| 300                    | 1315         | 1120         |
| 400                    | 1270         | 1025         |
| 500                    | 1200         | 955          |
| 600                    | 1095         | 900          |
| 650                    | 1075         | 890          |
| 700                    | 1065         | 870          |
| 750                    | 1010         | 855          |
| 800                    | 825          | 845          |
| 850                    | Note A       | 835          |
| 900                    | -            | 830          |
| 950                    | -            | 775          |
| 1000                   | _            | 700          |
| 1050                   | _            | 685          |
| 1100                   | _            | 610          |
| 1150                   | -            | 475          |
| 1200                   | -            | 370          |
| 1250                   |              | 295          |
| 1300                   | _            | 235          |
| 1350                   | _            | 190          |
| 1400                   | _            | 150          |
| 1450                   | _            | 115          |
| 1500                   | _            | 85           |

| VALVE SEA | VALVE SEATING/UNSEATING TORQUES |                           |  |  |  |  |  |  |  |  |  |  |  |
|-----------|---------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Valve     | Half-Rated<br>at 740 psi        | Full-Rated<br>at 1480 psi |  |  |  |  |  |  |  |  |  |  |  |
| Size      | inlb.                           | inlb.                     |  |  |  |  |  |  |  |  |  |  |  |
| 6         | 13000                           | 26000                     |  |  |  |  |  |  |  |  |  |  |  |
| 8         | 16000                           | 32000                     |  |  |  |  |  |  |  |  |  |  |  |
| 10        | 25000                           | 50000                     |  |  |  |  |  |  |  |  |  |  |  |
| 12        | 52500                           | 105000                    |  |  |  |  |  |  |  |  |  |  |  |
| 14        | 62500                           | 125000                    |  |  |  |  |  |  |  |  |  |  |  |
| 16        | 75500                           | 151000                    |  |  |  |  |  |  |  |  |  |  |  |
| 18        | 93000                           | 186000                    |  |  |  |  |  |  |  |  |  |  |  |
| 20        | 118000                          | 235000                    |  |  |  |  |  |  |  |  |  |  |  |
| 24        | 170000                          | 340000                    |  |  |  |  |  |  |  |  |  |  |  |

See Note A, B, C

#### Note:

- A. Permissible, but not recommended for prolonged usage above about 800° F.
- B. These values may be interpolated on a linear scale for shut-off pressures between 740 psi and 1480 psi.
- C. Values shown are for preferred direction of shut-off under static differential pressure conditions.

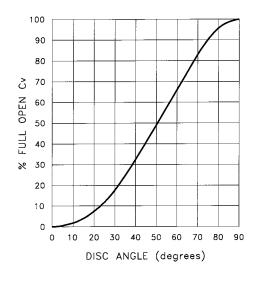


# **ANSI and DIN VALVE DATA**

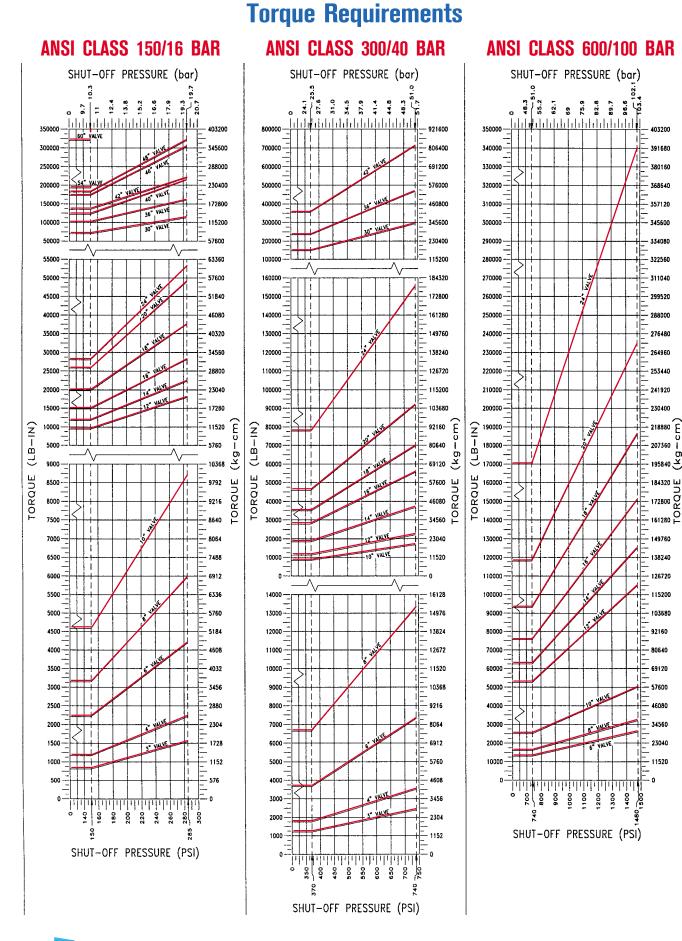
# Weights (pounds)

| ANSI CLASS/BAR | STYLE  | 3" | 4" | 6"  | 8"  | 10" | 12" | 14" | 16" | 18"   | 20"   | 24"   | 30"   | 36"   | 40"   | 42"   | 46"   | 48"   | 54"   | 60"   |
|----------------|--------|----|----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 150/16         | Wafer  | 20 | 24 | 37  | 56  | 88  | 135 | 181 | 270 | 330   | 450   | 662   | 1,110 | 1,780 | 2,250 | 2,900 | 3,300 | 3,900 | 5,500 | 7,100 |
| 150/16         | Lugged | 20 | 31 | 44  | 68  | 107 | 175 | 235 | 330 | 404   | 560   | 878   | 1,350 | 2,250 | 3,200 | 3,600 | 4,550 | 5,000 | 7,000 | 9,200 |
| 150/16         | Double | 34 | 50 | 72  | 111 | 161 | 238 | 315 | 410 | 515   | 610   | 900   | 1,800 | 2,550 | 3,500 | 3,900 | 4,700 | 5,200 | 6,500 | 8,000 |
| 300/40         | Wafer  | 30 | 40 | 62  | 108 | 151 | 240 | 410 | 581 | 556   | 800   | 1,400 | 1,800 | 3,150 |       | 4,150 |       |       |       |       |
| 300/40         | Lugged | 34 | 47 | 76  | 133 | 193 | 258 | 456 | 680 | 900   | 1,032 | 1,160 | 2,950 | 4,750 |       | 5,350 |       |       |       |       |
| 300/40         | Double | 65 | 85 | 120 | 186 | 260 | 375 | 510 | 660 | 860   | 1,100 | 1,600 | 3,150 | 4,900 |       | 5,600 |       |       |       |       |
| 600/100        | Wafer  |    |    | 100 | 154 | 226 | 328 | 535 | 700 | 950   | 1,040 | 1,820 |       |       |       |       |       |       |       |       |
| 600/100        | Lugged |    |    | 124 | 208 | 311 | 443 | 735 | 885 | 1,268 | 1,560 | 2,340 |       |       |       |       |       |       |       |       |
| 600/100        | Double |    |    | 150 | 250 | 340 | 550 | 750 | 950 | 1,300 | 1,640 | 2,450 |       |       |       |       |       |       |       |       |

#### Valve Size:


## **Cv Values**

#### Valve Size:

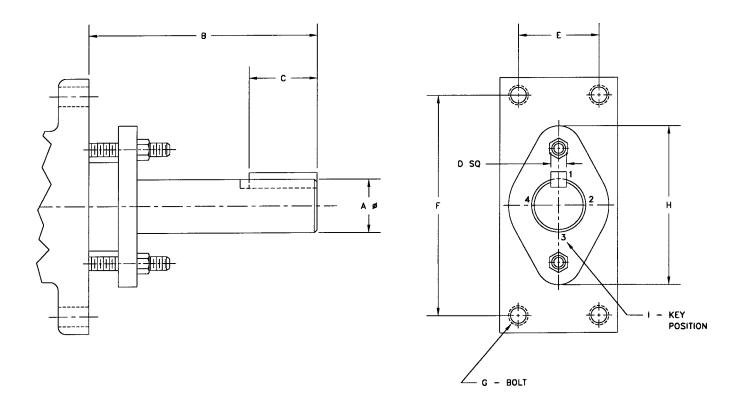

| ANSI<br>CLASS/BAR | 3"  | 4"  | 6"  | 8"    | 10"   | 12"   | 14"   | 16"   | 18"    | 20"    | 24"    | 30"    | 36"    | 40"    | 42"    | 46"    | 48"    | 54"     | 60"     |
|-------------------|-----|-----|-----|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 150/16            | 188 | 343 | 930 | 1,812 | 2,750 | 3,900 | 5,515 | 8,440 | 11,285 | 14,092 | 20,587 | 33,700 | 50,470 | 64,000 | 71,100 | 87,300 | 95,740 | 120,750 | 147,000 |
| 300/40            | 188 | 343 | 868 | 1,678 | 2,500 | 3,510 | 4,942 | 7,596 | 10,394 | 12,965 | 18,962 | 29,600 | 42,700 |        | 58,100 |        |        |         |         |
| 600/100           |     |     | 744 | 1,450 | 2,125 | 2,730 | 4,217 | 6,487 | 8,874  | 11,071 | 16,188 |        |        |        |        |        |        |         |         |

# **Typical Flow Characteristic**

For control applications a wide variety of actuators and accessories can be provided. At moderate pressure drop conditions, turndown approaching 100 to 1 can be achieved because of the camming action of the disc opening. The disc lifts off the seat very quickly and an equal percentage control curve is produced between  $15^{\circ}$  to  $75^{\circ}$ .



SCORE ENERGY PRODUCTS INC. TRICENTRIC® Division




#### **SCORE ENERGY PRODUCTS INC.** TRICENTRIC® Division

50

ALVES

# **Actuator Mounting Data**



|   |                            | 3"                              | 4"                              | 6"                              | 8"                              | 10"                                    | 12"                             | 14"                                    | 16"                            | 18"                            |
|---|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|--------------------------------|--------------------------------|
| А | Lug/Wafer<br>Double Flange | 3⁄4                             | 7⁄8                             | <b>1</b> 1⁄8                    | 1¼                              | 11⁄2                                   | <b>1</b> ⁵⁄8                    | 1¾                                     | 2                              | 2¼                             |
| В | Lug/Wafer<br>Double Flange | 4½                              | 4½                              | 5                               | 5½                              | 5½                                     | 7¾                              | 7¾                                     | 7¾                             | 7¾                             |
| С | Lug/Wafer<br>Double Flange | 7⁄8                             | 7/8                             | 1 <sup>7</sup> / <sub>16</sub>  | 17⁄8                            | 1 <sup>13</sup> / <sub>16</sub>        | 25⁄8                            | 25/8                                   | 21⁄2                           | 2 <sup>9</sup> / <sub>16</sub> |
| D | Lug/Wafer<br>Double Flange | <sup>3</sup> / <sub>16</sub>    | 1⁄4                             | 1⁄4                             | 1⁄4                             | <sup>3</sup> ⁄8                        | 3⁄8                             | <sup>3</sup> ⁄8                        | 1⁄2                            | 1⁄2                            |
| E | Lug/Wafer                  | 1                               | 1¼                              | 1¼                              | 1¼                              | 1¼                                     | 2                               | 2                                      | 2                              | 31⁄8                           |
|   | Double Flange              | 3½                              | 4                               | 4                               | 4                               | 3                                      | 31⁄2                            | 31⁄2                                   | 31⁄2                           | 4                              |
| F | Lug/Wafer                  | 5                               | 5                               | 5                               | 5                               | 5                                      | 6¼                              | 6¼                                     | 6¼                             | 6¾                             |
|   | Double Flange              | 3½                              | 4                               | 4                               | 4                               | <b>4</b> 7⁄8                           | 6¼                              | 6¼                                     | 6¼                             | 6¾                             |
| G | Lug/Wafer                  | ³⁄₀" <b>-</b> 16                | 3∕8"- 16                        | <sup>3</sup> ⁄8" <b>- 1</b> 6   | ³∕₃"- <b>1</b> 6                | ³∕8" <b>- 1</b> 6                      | ½"- 13                          | 1⁄2"- 13                               | 1⁄2"- 13                       | ⁵⁄8" <b>- 11</b>               |
| 6 | Double Flange              | ³⁄₀"- 16                        | ³⁄₃" <b>- 1</b> 6               | ³⁄₃" <b>- 1</b> 6               | ³⁄₃" <b>- 1</b> 6               | ³⁄₃" <b>-</b> 16                       | 1⁄2"- 13                        | ½"- 13                                 | 5∕8" <b>- 11</b>               | ³¼"- 10                        |
| Н | Lug/Wafer                  | 3 <sup>23</sup> / <sub>32</sub> | <b>4</b> <sup>11</sup> / <sub>32</sub> | 4 <sup>11</sup> / <sub>32</sub> | <b>4</b> <sup>11</sup> / <sub>32</sub> | 5 <sup>3</sup> / <sub>32</sub> | 5 <sup>3</sup> / <sub>32</sub> |
| I | Lug/Wafer<br>Double Flange | 1                               | 1                               | 1                               | 1                               | 1                                      | 1                               | 1                                      | 1                              | 1                              |

#### ANSI CLASS 150/16 BAR



# ANSI CLASS 150/16 BAR CONTINUED

|   |                            | 20"                            | 24"                             | 30"        | 36"          | 40"    | 42"    | 46"    | 48"    | 54"     | 60"                            |
|---|----------------------------|--------------------------------|---------------------------------|------------|--------------|--------|--------|--------|--------|---------|--------------------------------|
| A | Lug/Wafer<br>Double Flange | 21⁄2                           | 3                               | 3          | 3½           | 3¾     | 4      | 4¾     | 41⁄2   | 4¼      | 6                              |
| В | Lug/Wafer<br>Double Flange | <b>7</b> ¾                     | 7¾                              | 12         | 12           | 12     | 12     | 12     | 12     | 14¼     | 141⁄8                          |
| С | Lug/Wafer<br>Double Flange | 23⁄8                           | 3 <sup>5</sup> / <sub>16</sub>  | <b>4</b> ¾ | <b>4</b> 5⁄8 | 4½     | 41⁄8   | 5      | 5¾     | 41⁄2    | 5 <sup>7</sup> / <sub>16</sub> |
| D | Lug/Wafer<br>Double Flange | 5⁄8                            | 3⁄4                             | 3/4        | 7⁄8          | 7⁄8    | 1      | 1¼     | 1      | 1       | 11⁄2                           |
| Е | Lug/Wafer                  | 31⁄8                           | 31⁄8                            | 31⁄2       | 4½           | 4½     | 4½     | 4½     | 41⁄2   | 6½      | 7                              |
|   | Double Flange              | 4                              | 5                               | 3½         | 4            | 4½     | 4½     | 4½     | 41⁄2   | 6½      | 7                              |
| F | Lug/Wafer                  | 6¾                             | 6¾                              | 11         | 12¼          | 14     | 12¼    | 12¼    | 12¼    | 13¼     | 15                             |
|   | Double Flange              | 6¾                             | 6¾                              | 11         | 12¼          | 14     | 12¼    | 12¼    | 12¼    | 13¼     | 15                             |
| G | Lug/Wafer                  | ⁵⁄8" <b>- 11</b>               | ₅%" <b>- 11</b>                 | 1" - 8     | 1" - 8       | 1" - 8 | 1" - 8 | 1" - 8 | 1" - 8 | 1¼" - 8 | 1¼" - 8                        |
| 9 | Double Flange              | ³¼"- 10                        | <sup>3</sup> ⁄4"- 10            | 1" - 8     | 1" - 8       | 1" - 8 | 1" - 8 | 1" - 8 | 1" - 8 | 1¼" - 8 | 1¼" - 8                        |
| Н | Lug/Wafer                  | 5 <sup>3</sup> / <sub>32</sub> | 5 <sup>15</sup> / <sub>16</sub> | 6          | 7            | 71⁄2   | 7½     | 8      | 8      | 7¾      | 10¼                            |
| I | Lug/Wafer<br>Double Flange | 1                              | 1                               | 1          | 1            | 1&4    | 1      | 1&3    | 1      | 1&3     | 1&3                            |

# ANSI CLASS 300/40 BAR

|   |                            | 3"                             | 4"                                     | 6"                              | 8"                             | 10"                            | 12"              | 14"              | 16"                             | 18"                            |
|---|----------------------------|--------------------------------|----------------------------------------|---------------------------------|--------------------------------|--------------------------------|------------------|------------------|---------------------------------|--------------------------------|
| Α | Lug/Wafer<br>Double Flange | 3/4                            | 7⁄8                                    | 1¼                              | 1½                             | 1₅⁄8                           | 1¾               | 2¼               | 21⁄2                            | 2¾                             |
| В | Lug/Wafer<br>Double Flange | 5 <sup>5</sup> / <sub>16</sub> | 5 <sup>5</sup> / <sub>16</sub>         | 5 <sup>11</sup> / <sub>16</sub> | 71⁄8                           | 71⁄8                           | 71⁄8             | 7                | 7                               | 7                              |
| С | Lug/Wafer<br>Double Flange | 2 <sup>3</sup> / <sub>16</sub> | <b>1</b> <sup>15</sup> / <sub>16</sub> | 2¾                              | 2 <sup>9</sup> / <sub>16</sub> | 2 <sup>1</sup> / <sub>16</sub> | 25⁄8             | 11⁄2             | 1 <sup>11</sup> / <sub>16</sub> | 1 <sup>9</sup> / <sub>16</sub> |
| D | Lug/Wafer<br>Double Flange | <sup>3</sup> / <sub>16</sub>   | 1⁄4                                    | 1⁄4                             | 3⁄8                            | 3⁄8                            | 3⁄8              | 1⁄2              | 5⁄8                             | 5⁄8                            |
| Е | Lug/Wafer                  | 1                              | 1                                      | 1                               | 1¾                             | 2                              | 2                | 3                | 3                               | 4                              |
|   | Double Flange              | 33⁄8                           | 4                                      | 3¼                              | 41⁄2                           | 41⁄2                           | 31⁄2             | 5½               | 5½                              | 51⁄2                           |
| F | Lug/Wafer                  | 5                              | 5                                      | 5                               | 6¼                             | 6¼                             | 6¼               | 9¾               | 9¾                              | 9¾                             |
| • | Double Flange              | 3¾                             | 4                                      | 5                               | 4½                             | 41⁄2                           | 6¼               | 9¾               | 9¾                              | 9¾                             |
| G | Lug/Wafer                  | ³∕₃" <b>- 1</b> 6              | ³⁄₃" <b>-</b> 16                       | 3∕8"- 16                        | 3∕8"- 16                       | ½" <b>-</b> 13                 | 1∕₂"- 13         | ⁵⁄8" <b>- 11</b> | ⁵⁄8" <b>- 11</b>                | ³¼"- 10                        |
| 0 | Double Flange              | 3∕₀"- 16                       | 3∕₃"- 16                               | ³⁄₃" <b>-</b> 16                | 1⁄2"- 13                       | 1⁄2"- 13                       | ⁵⁄8" <b>- 11</b> | 5∕8"- 11         | ³⁄₄"- 10                        | 7∕8" - 9                       |
| Н | Lug/Wafer<br>Double Flange | 41⁄8                           | <b>4</b> ½                             | <b>4</b> 1⁄8                    | 5¼                             | 5¼                             | 5¼               | 61/8             | 67⁄8                            | 71⁄8                           |
|   | Lug/Wafer<br>Double Flange | 1                              | 1                                      | 1                               | 1                              | 1                              | 1                | 1                | 1                               | 1                              |



# ANSI CLASS 300/40 BAR CONTINUED

|   |                            | 20"                  | 24"     | 30"     | 36"     | 42"                            |
|---|----------------------------|----------------------|---------|---------|---------|--------------------------------|
| A | Lug/Wafer<br>Double Flange | 3                    | 31⁄2    | 4       | 5       | 5                              |
| В | Lug/Wafer<br>Double Flange | 7                    | 7       | 12      | 12      | 14                             |
| С | Lug/Wafer<br>Double Flange | 1½                   | 1¾      | 37⁄8    | 4       | 5 <sup>1</sup> / <sub>16</sub> |
| D | Lug/Wafer<br>Double Flange | 3/4                  | 7⁄8     | 1       | 1¼      | 1¼                             |
| E | Lug/Wafer                  | 4                    | 4       | 6       | 8       | 8                              |
|   | Double Flange              | 51⁄2                 | 6¾      | 8       | 8       | 8                              |
| F | Lug/Wafer                  | 9¾                   | 9¾      | 12      | 12      | 12                             |
| Г | Double Flange              | 9¾                   | 9¾      | 12      | 12      | 12                             |
| G | Lug/Wafer                  | <sup>3</sup> ⁄4"- 10 | ³¼"- 10 | 1¼" - 8 | 1¾" - 8 | 1‰" <b>-</b> 8                 |
| 6 | Double Flange              | 7⁄8" - 9             | 1" - 8  | 1¼" - 8 | 1¾" - 8 | 1⁵⁄₃" - 8                      |
| Н | Lug/Wafer<br>Double Flange | 71/8                 | 8½      | 81⁄2    | 10½     | 10½                            |
| I | Lug/Wafer<br>Double Flange | 1                    | 1&3     | 1&3     | 1&3     | 1&3                            |

# ANSI CLASS 600/100 BAR

|   |           | 6"                              | 8"                              | 10"                   | 12"                             | 14"                            | 16"    | 18"                            | 20"    | 24"                            |
|---|-----------|---------------------------------|---------------------------------|-----------------------|---------------------------------|--------------------------------|--------|--------------------------------|--------|--------------------------------|
| Α | Lug/Wafer | 1½                              | <b>1</b> 7⁄8                    | 21⁄8                  | 2¾                              | 3                              | 31⁄8   | 3¼                             | 3½     | 4                              |
| В | Lug/Wafer | 7 <sup>11</sup> / <sub>16</sub> | 7 <sup>11</sup> / <sub>16</sub> | 8¼                    | 8 <sup>31</sup> / <sub>32</sub> | 9 <sup>3</sup> / <sub>16</sub> | 10½    | 10½                            | 10½    | 10½                            |
| С | Lug/Wafer | 3 <sup>11</sup> / <sub>16</sub> | 33⁄8                            | 2¾                    | 2¼                              | 31⁄8                           | 37⁄8   | 5 <sup>3</sup> / <sub>16</sub> | 2¼     | 3 <sup>5</sup> / <sub>16</sub> |
| D | Lug/Wafer | 3⁄8                             | 1/2                             | 1⁄2                   | 5⁄8                             | 3⁄4                            | 3⁄4    | 3/4                            | 7⁄8    | 1                              |
| E | Lug/Wafer | 2                               | 2                               | 2¾                    | 31⁄8                            | <b>4</b> 5⁄8                   | 4¾     | 5                              | 5      | 6                              |
| F | Lug/Wafer | 6¼                              | 6¼                              | 6                     | 7 <sup>9</sup> / <sub>16</sub>  | 7½                             | 91⁄2   | 11                             | 12     | 14                             |
| G | Lug/Wafer | 1⁄2" - 13                       | 1⁄2" - 13                       | <sup>3</sup> ⁄4" - 10 | ³¼" - 10                        | 1" - 8                         | 1" - 8 | 1" - 8                         | 1" - 8 | 1" - 8                         |
| Н | Lug/Wafer | 4¼                              | 5                               | 5                     | 6½                              | 6¾                             | 6%     | 7                              | 8¼     | 81/8                           |
| l | Lug/Wafer | 1                               | 1                               | 1                     | 1&3                             | 1                              | 1      | 1                              | 1      | 1                              |

Consult SCORE Energy Products Inc. for CL600 Double Flange mounting dimensions.



# **Score-TRICENTRIC® Valve - Material Pressure and Temperature Ratings**

| C              | omponent | Material                                 | Temperature<br>range |         | um body  <br>ting at 10(<br>(psig) | ۶°F       | Note     |
|----------------|----------|------------------------------------------|----------------------|---------|------------------------------------|-----------|----------|
|                |          |                                          | (°F)                 | CL150   | CL300                              | CL600     |          |
| BODY &<br>DISC | STANDARD | WCB - ASTM A216 (carbon steel)           | -20 to 1000          | 285     | 740                                | 1480      | (1)      |
|                |          | CF8M - ASTM A351 (316SST)                | -425 to 1500         | 275     | 720                                | 1440      | (3)(4)   |
|                | OPTIONAL | LCB - ASTM A352 (carbon steel low temp.) | -50 to 650           | 265     | 695                                | 1390      |          |
|                |          | LCC - ASTM A352(carbon steel low temp.)  | -50 to 650           | 290     | 750                                | 1500      |          |
|                |          | LC3 - ASTM A352 (carbon steel low temp.) | -150 to 650          | 290     | 750                                | 1500      |          |
|                |          | WC6 - ASTM A217 (Cr-Mo steel)            | -20 to 1050          | 290     | 750                                | 1500      | (2)(3)   |
|                |          | WC9- ASTM A217 (Cr-Mo steel)             | -20 to 1100          | 290     | 750                                | 1500      | (2)(3)   |
|                |          | CF8 - ASTM A351 (304SST)                 | -425 to 1500         | 275     | 720                                | 1440      | (3)(4)   |
|                |          | CF8C - ASTM A35 (347SST)                 | -325 to 1500         | 275     | 720                                | 1440      | (3)(4)   |
|                |          | CG8M - ASTM A351 (317 SST)               | -425 to 1000         | 275     | 720                                | 1440      | (3)      |
|                |          | CN7M - ASTM A351 (ALLOY 20)              | -325 to 600          | 230     | 600                                | 1200      | (5)      |
|                |          | CD4MCu - ASTM A351 (Duplex)              | -425 to 600          | 290     | 750                                | 1500      |          |
|                |          | CZ100 - ASTM A494 (Nickel)               | -325 to 600          | 140     | 360                                | 720       | (6)      |
|                |          | CY40 - ASTM A494 (Inconel 600)           | -325 to 1200         | 290     | 750                                | 1500      | (6)(3)   |
|                |          | M30C - ASTM A494 (Monel 400)             | -325 to 900          | 230     | 600                                | 1200      | (6)      |
|                |          | CW12MW - ASTM A494 (Hastelloy C)         | -325 to 1000         | 230     | 600                                | 1200      | (5)      |
|                |          | C95500 - ASTM B148 (Ni-Al-Bz)            | -425 to 600          | Contact | Score Sale                         | es Rep.   |          |
|                |          | GRADE 3 TITANIUM                         | -75 to 600           | Contact | Score Sale                         | es Rep.   |          |
| SEAT           | STANDARD | 316L SST overlay on carbon steel         | per body<br>material |         |                                    |           |          |
|                |          | Integral cast on stainless and exotic    | per body<br>material |         |                                    |           |          |
|                | OPTIONAL | ALLOY 6                                  | -425 to 1500         |         |                                    |           |          |
|                |          | ALLOY 21                                 | -425 to 800          |         |                                    |           |          |
|                |          | INCOLLOY 825                             | -20 to 1200          |         |                                    |           |          |
| SHAFT          | STANDARD | S17400 (17.4 PH DH1150) - Full Rated     | -325 to 850          |         |                                    |           | (7)      |
|                | OPTIONAL | 316SST- Reduced Rated                    | -425 to 600          |         |                                    |           | (8) (11) |
|                |          | ALLOY 20- Reduced Rated                  | -325 to 800          |         |                                    |           | (8) (11) |
|                |          | INCONEL 600- Reduced Rated               | -325 to 900          |         |                                    |           | (8) (11) |
|                |          | INCONEL 625- Reduced Rated               | -325 to 1200         |         |                                    |           | (8) (11) |
|                |          | MONEL K500 - Full Rated                  | -325 to 900          |         |                                    | <u></u> · | (11)     |
|                |          | INCONEL 718/750 - Full Rated             | -20 to 1500          |         |                                    |           | (11)     |
|                |          | Stainless or Exotic equal to body grade  | per body<br>material |         |                                    |           | (8) (11) |



| Co      | mponent  | Material                            | Temperature<br>range |       | um body<br>iting at 10<br>(psig) |       | Note    |
|---------|----------|-------------------------------------|----------------------|-------|----------------------------------|-------|---------|
|         |          |                                     | (°F)                 | CL150 | CL300                            | CL600 |         |
| SEAL    | STANDARD | 316SST Laminated w/Grafoil          | -400 to 1200         |       |                                  |       | (9)     |
| STACK   | OPTIONAL | 316SST Laminated w/Klinger C4401    | -100 to 750          |       |                                  |       |         |
|         |          | 316SST Solid                        | -400 to 1200         |       |                                  |       |         |
|         |          | 316SST Solid w/Stellite overlay     | -400 to 1500         |       |                                  |       |         |
|         |          | INCONEL 600 Laminated w/Grafoil     | -20 to 1200          |       |                                  |       | (9)     |
|         |          | INCONEL 625 Laminated w/Grafoil     | -20 to 1000          |       |                                  |       |         |
|         |          | MONEL 400 Laminated w/Grafoil       | -400 to 900          |       |                                  |       | (9)     |
|         |          | MONEL 400 Laminated w/Klinger C4401 | -100 to 750          |       |                                  |       |         |
| BEARING | STANDARD | CL150 - Graphite                    | -400 to 1700         |       |                                  |       | (10)    |
|         |          | CL300 and CL600 - Nitronic 60       | -325 to 1500         |       |                                  |       |         |
|         | OPTIONAL | Nitronic 60 (CL150)                 | -325 to 1500         |       |                                  |       |         |
|         |          | Graphite (CL300 and CL600)          | -400 to 1700         |       |                                  |       | (10)(8) |
|         |          | PTFE composition                    | -425 to 325          |       |                                  |       | (8)     |
|         |          | Stellite #6                         | -425 to 1500         |       |                                  |       |         |
|         |          | Bronze                              | -425 to 600          |       |                                  |       | (8)     |
|         |          | Ceramic composition                 | -20 to 2500          |       |                                  |       | (8)     |
| PACKING | STANDARD | J.C. 387I and Grafoil               | -400 to 1200         |       |                                  |       | (9)     |
|         | OPTIONAL | PTFE Chevron                        | -425 to 450          |       |                                  |       |         |
|         |          | PTFE Braided                        | -425 to 450          |       |                                  |       |         |

NOTE:

- 1. Per ASME B16.34 Permissible but not recommended for prolonged use above 800° F.
- 2. Per ASME B16.34 Use normalized and tempered material only.
- 3. Per ASME B16.34 Use of a flanged valve in CL150 ANSI above 1000° F not recommended.
- 4. Per ASME B16.34 At temperatures over 1000° F, use only when the carbon content is 0.04% or higher.
- 5. Per ASME B16.34 Use solution annealed material only.
- 6. Per ASME B16.34 Use annealed material only.
- 7. Long exposure above 600° F may cause embrittlement.
- 8. Use of this material may result in a reduced differential pressure rating. Contact Score sales representative.
- 9. Upper temperature limit reduced to 850° F in oxidizing media.
- 10. Upper temperature limit reduced to 650° F in oxidizing atmosphere.
- 11. Upper temperature limit is specified as a general guide based on code, specification and minimum torsional seating requirements. Use of material above this limit may violate these requirements. Contact a Score Sales or Engineering representative for specific application material evaluation.



#### **General Corrosion Data**

This corrosion table is only intended to give a general indication of how various materials will react when in contact with certain fluids at ambient temperature. The data cannot be absolute because concentration, temperature, pressure and other conditions may alter the suitability of a particular material. There are also economic considerations that may influence material selection. Use this table as a guide only.

| Br<br>Steel<br>Cl<br>416 & 440C<br>17-4<br>304<br>316                                                            | rrosion<br>Aluminum<br>Brass<br>Carbon steel, WCB,<br>Cast iron<br>Also includes 410, 4<br>Includes 304L, CF3<br>Includes 316L, CF3I<br>Includes 2205, CD3 | B<br>WCC, L<br>CA15 an<br>CB7Cu-<br>and CF4<br>M, CF8M | CB, LCC, <sup>N</sup><br>d CA6NM<br>1 and CB7<br>3<br>I, 317 and I | WC9 and C<br>Cu-2<br>CG8M                                | 5                                           |                                            |                                            | roceed<br>254 S<br>20<br>400<br>C276<br>B2<br>6<br>Ti<br>Zr | with                                | Cautio<br>Includes S<br>Includes C<br>Includes M<br>Includes H<br>Includes H<br>Cobalt-bas<br>Titanium<br>Zirconium | 31254 (A<br>arpente<br>lonel® 4<br>lastelloy<br>lastelloy | Avesta® 2<br>r 20Cb-30<br>00, R405<br>® C276, 0<br>® B2 and | ® and CN<br>, M35-1, H<br>CW2M, C<br>I N7M | and CK3<br>7M<br>(500<br>22 and C        | 3MCuN                      |                                |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------|--------------------------------|
| FLUID<br>Acetaldehyde<br>Acetic Acid, Air Free<br>Acetic Acid, Aerated<br>Acetone<br>Acetylene                   | AL<br>A<br>C<br>C<br>B<br>A                                                                                                                                | Br.<br>A<br>C<br>C<br>A<br>A                           | CI &<br>Steel<br>C<br>C<br>C<br>A<br>A                             | <b>416 &amp;</b><br><b>440C</b><br>A<br>C<br>C<br>A<br>A | <b>17-4</b><br>SST<br>A<br>C<br>B<br>A<br>A | <b>304</b><br>SST<br>A<br>C<br>B<br>A<br>A | <b>316</b><br>SST<br>A<br>A<br>A<br>A<br>A | Duplex<br>SST<br>A<br>A<br>A<br>A<br>A<br>A                 | 254<br>SM0<br>A<br>A<br>A<br>A<br>A | Alloy<br>20<br>A<br>A<br>A<br>A<br>A<br>A                                                                           | Alloy<br>400<br>A<br>A<br>C<br>A<br>A<br>A                | Alloy<br>C276<br>A<br>A<br>A<br>A<br>A<br>A                 | Alloy<br>B2<br>A<br>A<br>A<br>A<br>A<br>A  | Alloy<br>6<br>A<br>A<br>A<br>A<br>A<br>A | Ti.<br>A<br>A<br>A<br>A    | <b>Zr.</b><br>A<br>A<br>A<br>A |
| Alcohols<br>Aluminum Sulfate<br>Ammonia<br>Ammonium Chloride<br>Ammonium Hydroxide                               | A<br>C<br>A<br>C<br>A                                                                                                                                      | A<br>C<br>C<br>C<br>C                                  | A<br>C<br>A<br>C<br>A                                              | A<br>C<br>A<br>C<br>A                                    | A<br>B<br>A<br>C<br>A                       | A<br>A<br>C<br>A                           | A<br>A<br>B<br>A                           | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                    | A<br>A<br>A<br>A                                                                                                    | A<br>B<br>A<br>C                                          | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                           | A<br>A<br>B<br>A                         | A<br>A<br>A<br>A           | A<br>A<br>A<br>B               |
| Ammonium Nitrate<br>Ammonium Phosphate<br>(Mono-Basic)<br>Ammonium Sulfate<br>Ammonium Sulfite<br>Aniline        | B<br>B<br>C<br>C<br>C                                                                                                                                      | C<br>B<br>C<br>C<br>C                                  | B<br>C<br>C<br>C<br>C                                              | B<br>B<br>C<br>C<br>C                                    | A<br>B<br>A<br>A                            | A<br>A<br>B<br>A<br>A                      | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                    | A<br>A<br>A<br>A                                                                                                    | C<br>B<br>A<br>C<br>B                                     | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                         | C<br>A<br>A<br>A           | A<br>A<br>A<br>A               |
| Asphalt<br>Beer<br>Benzene (Benzol)<br>Benzoic Acid<br>Boric Acid                                                | A<br>A<br>A<br>C                                                                                                                                           | A<br>A<br>A<br>B                                       | A<br>B<br>A<br>C<br>C                                              | A<br>B<br>A<br>C<br>C                                    | A<br>A<br>A<br>A                            | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                    | A<br>A<br>A<br>A                                                                                                    | A<br>A<br>A<br>B                                          | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                         | A<br>A<br>A<br>A           | A<br>A<br>A<br>A               |
| Bromine, Dry<br>Bromine, Wet<br>Butane<br>Calcium Chloride<br>Calcium Hypochlorite                               | C<br>A<br>C<br>C                                                                                                                                           | C<br>C<br>A<br>C<br>C                                  | C<br>C<br>B<br>C                                                   | C C A C C                                                | B<br>C<br>A<br>C<br>C                       | B<br>C<br>A<br>B<br>C                      | B<br>C<br>A<br>B<br>C                      | A<br>C<br>A<br>A<br>A                                       | A<br>C<br>A<br>A                    | A<br>C<br>A<br>A<br>A                                                                                               | A<br>A<br>A<br>C                                          | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>B                           | A<br>C<br>A<br>B                         | C<br>C<br>A<br>A<br>A      | C<br>A<br>A<br>A               |
| Carbon Dioxide, Dry<br>Carbon Dioxide, Wet<br>Carbon Disulfide<br>Carbonic Acid<br>Carbon Tetrachloride          | A<br>A<br>C<br>A<br>A                                                                                                                                      | A<br>B<br>C<br>B<br>A                                  | A<br>C<br>A<br>C<br>B                                              | A<br>C<br>B<br>C<br>B                                    | A<br>A<br>A<br>A                            | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                    | A<br>A<br>A<br>A                                                                                                    | A<br>A<br>A<br>A                                          | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                           | A<br>A<br>A<br>A                         | A<br>A<br>A<br>A           | A<br>A<br>A<br>A               |
| Caustic Potash (see Po<br>Caustic Soda (see Sod<br>Chlorine, Dry<br>Chlorine, Wet<br>Chromic Acid                |                                                                                                                                                            | e)<br>C<br>C<br>C                                      | A<br>C<br>C                                                        | СССС                                                     | B<br>C<br>C                                 | B<br>C<br>C                                | B<br>C<br>C                                | A<br>C<br>B                                                 | A<br>C<br>A                         | A<br>C<br>C                                                                                                         | A<br>B<br>C                                               | A<br>B<br>A                                                 | A<br>B<br>B                                | A<br>C<br>C                              | C<br>A<br>A                | A<br>A<br>A                    |
| Citric Acid<br>Coke Oven Acid<br>Copper Sulfate<br>Cottonseed Oil<br>Creosote                                    | B<br>C<br>C<br>A<br>C                                                                                                                                      | C<br>B<br>C<br>A<br>C                                  | C<br>A<br>C<br>A<br>A                                              | C<br>A<br>C<br>A<br>A                                    | B<br>A<br>C<br>A<br>A                       | B<br>A<br>C<br>A<br>A                      | A<br>A<br>B<br>A<br>A                      | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                    | A<br>A<br>A<br>A                                                                                                    | A<br>B<br>C<br>A<br>A                                     | A<br>A<br>A<br>A                                            | A<br>A<br>A<br>A                           | A<br>A<br>C<br>A<br>A                    | A<br>A<br>A<br>A           | A<br>A<br>A<br>A               |
| Dowtherm<br>Ethane<br>Ether<br>Ethyl Chloride<br>Ethylene<br>Ethylene Glycol<br>Ferric Chloride<br>Fluorine, Dry | A<br>A<br>C<br>A<br>C<br>B                                                                                                                                 | A<br>A<br>A<br>B<br>A<br>A<br>C<br>B                   | A<br>B<br>C<br>A<br>C<br>A                                         | A<br>A<br>A<br>C<br>A<br>A<br>C<br>C                     | A<br>A<br>B<br>A<br>C<br>B                  | A<br>A<br>B<br>A<br>C<br>B                 | A<br>A<br>A<br>B<br>A<br>C<br>B            | A<br>A<br>A<br>A<br>C<br>A                                  | A<br>A<br>A<br>A<br>B<br>A          | A<br>A<br>A<br>A<br>C<br>A                                                                                          | A<br>A<br>A<br>A<br>A<br>C<br>A                           | A<br>A<br>A<br>A<br>A<br>A<br>A                             | A<br>A<br>A<br>A<br>C<br>A                 | A A A A A C A                            | A<br>A<br>A<br>A<br>A<br>C | A<br>A<br>A<br>A<br>A<br>C     |



| FLUID                                                                                                                                 | AL                    | Br.                        | CI &<br>Steel         | 416 &<br>440C              | 17-4<br>SST                     | 304<br>SST                      | 316<br>SST                 | Duplex<br>SST              | 254<br>SM0                 | Alloy<br>20                | Alloy<br>400          | Alloy<br>C276              | Alloy<br>B2                | Alloy<br>6                 | Ti.                             | Zr.                        |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|
| Fluorine, Wet<br>Formaldehyde<br>Formic Acid<br>Freon, Wet<br>Freon, Dry<br>Furfural<br>Gasoline, Refined                             | C<br>B<br>C<br>A<br>A | C<br>C<br>C<br>A<br>A<br>A | C<br>B<br>B<br>A<br>A | C<br>A<br>C<br>A<br>B<br>A | C<br>A<br>C<br>B<br>A<br>A<br>A | C<br>A<br>C<br>B<br>A<br>A<br>A | C<br>A<br>A<br>A<br>A<br>A | C<br>A<br>A<br>A<br>A      | C<br>A<br>A<br>A<br>A<br>A | C<br>A<br>A<br>A<br>A<br>A | B<br>C<br>A<br>A<br>A | B<br>A<br>A<br>A<br>A<br>A | B<br>B<br>A<br>A<br>A<br>A | C<br>A<br>A<br>A<br>A<br>A | C<br>A<br>C<br>A<br>A<br>A<br>A | C<br>A<br>A<br>A<br>A<br>A |
| Glucose<br>Hydrochloric Acid (Aerated)<br>Hydrochloric Acid (Air Free)<br>Hydrofluoric Acid (Aerated)<br>Hydrofluoric Acid (Air Free) | A<br>C<br>C<br>C<br>C | A<br>C<br>C<br>C<br>C      | A<br>C<br>C<br>C<br>C | A<br>C<br>C<br>C<br>C      | A<br>C<br>C<br>C<br>C<br>C      | A<br>C<br>C<br>C<br>C           | A<br>C<br>C<br>C<br>C      | C<br>C<br>C<br>C<br>C<br>C | A<br>C<br>C<br>C<br>C      | A<br>C<br>C<br>C<br>C<br>C | A<br>C<br>C<br>B<br>A | A<br>B<br>B<br>B           | A<br>A<br>B<br>B           | A<br>C<br>C<br>C<br>C<br>C | A<br>C<br>C<br>C<br>C           | A<br>A<br>C<br>C           |
| Hydrogen<br>Hydrogen Peroxide<br>Hydrogen Sulfide<br>Iodine<br>Magnesium Hydroxide                                                    | A<br>C<br>C<br>B      | A<br>C<br>C<br>B           | A<br>C<br>C<br>C<br>A | C<br>C<br>C<br>A           | B<br>C<br>A<br>A                | A<br>A<br>A<br>A                | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>C<br>A<br>C<br>A | A<br>A<br>A<br>A           | A<br>C<br>A<br>A<br>A      | A<br>A<br>A<br>A           | C<br>A<br>C<br>A                | A<br>A<br>B<br>A           |
| Mercury<br>Methanol<br>Methyl Ethyl Ketone<br>Milk<br>Natural Gas                                                                     | C<br>A<br>A<br>A      | C<br>A<br>A<br>A           | A<br>A<br>C<br>A      | A<br>A<br>A<br>A           | A<br>A<br>A<br>A                | A<br>A<br>A<br>A                | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | B<br>A<br>A<br>A      | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | C<br>A<br>A<br>A                | A<br>A<br>A<br>A           |
| Nitric Acid<br>Oleic Acid<br>Oxalic Acid<br>Oxygen<br>Petroleum Oils, Refined                                                         | C<br>C<br>C<br>A      | C<br>C<br>A<br>A           | C<br>C<br>C<br>A      | C<br>B<br>C<br>C<br>A      | A<br>B<br>B<br>A                | A<br>B<br>B<br>A                | A<br>A<br>B<br>A           | A<br>A<br>B<br>A           | A<br>A<br>B<br>A           | A<br>A<br>B<br>A           | C<br>A<br>B<br>A<br>A | B<br>A<br>B<br>A           | C<br>A<br>B<br>A           | C<br>A<br>B<br>A           | A<br>C<br>C<br>A                | A<br>A<br>C<br>A           |
| Phosphoric Acid (Aerated)<br>Phosphoric Acid (Air Free)<br>Picnic Acid<br>Potash (see Potassium Carbonate)<br>Potassium Carbonate     | с<br>с<br>с           | с<br>с<br>с                | C<br>C<br>C<br>B      | C<br>C<br>C<br>B           | B<br>B<br>B                     | A<br>B<br>B                     | A<br>B<br>A<br>A           | A<br>A<br>A                | A<br>A<br>A                | A<br>A<br>A                | C<br>B<br>C<br>A      | A<br>A<br>A                | A<br>A<br>A                | A<br>B<br>A<br>A           | C<br>C<br>A                     | A<br>A<br>A                |
| Potassium Chloride<br>Potassium Hydroxide<br>Propane<br>Rosin<br>Silver Nitrate                                                       | C<br>C<br>A<br>A<br>C | C<br>C<br>A<br>A<br>C      | B<br>A<br>B<br>C      | C<br>B<br>A<br>C           | C<br>A<br>A<br>B                | B<br>A<br>A<br>A                | B<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>C      | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A                | A<br>A<br>A<br>A           |
| Soda Ash (see Sodium Carbonate)<br>Sodium Acetate<br>Sodium Carbonate<br>Sodium Chloride<br>Sodium Chromate                           | A<br>C<br>C<br>A      | A<br>C<br>A<br>A           | A<br>A<br>C<br>A      | A<br>B<br>C<br>A           | A<br>A<br>B<br>A                | A<br>A<br>B<br>A                | A<br>A<br>B<br>A           | A<br>A<br>A                | A<br>A<br>A<br>A           | A<br>A<br>A                | A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A                | A<br>A<br>A<br>A           | A<br>A<br>A                     | A<br>A<br>A<br>A           |
| Sodium Hydroxide<br>Sodium Hypochlorite<br>Sodium Thiosulfate<br>Stannous Chloride<br>Steam                                           | C<br>C<br>C<br>C<br>A | C<br>C<br>C<br>A           | A<br>C<br>C<br>A      | B<br>C<br>C<br>C<br>A      | B<br>C<br>B<br>C<br>A           | B<br>C<br>B<br>C<br>A           | A<br>C<br>A<br>B<br>A      | A<br>C<br>A<br>A           | A<br>C<br>A<br>A           | A<br>C<br>A<br>A           | A<br>C<br>A<br>C<br>A | A<br>A<br>A<br>A           | A<br>B<br>A<br>A<br>A      | A<br>C<br>A<br>B<br>A      | A<br>A<br>A<br>A                | A<br>A<br>A<br>A           |
| Stearic Acid<br>Sulfate Liquor (Black)<br>Sulfur<br>Sulfur Dioxide, Dry<br>Sulfur Trioxide, Dry                                       | C<br>C<br>A<br>C<br>C | B<br>C<br>B<br>C<br>C      | B<br>A<br>C<br>C      | B<br>C<br>A<br>C<br>C      | B<br>C<br>A<br>C<br>C           | A<br>B<br>A<br>C<br>C           | A<br>A<br>B<br>B           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>C<br>B      | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | B<br>A<br>B<br>B           | A<br>A<br>A<br>A                | A<br>A<br>A<br>A           |
| Sulfuric Acid (Aerated)<br>Sulfuric Acid (Air Free)<br>Sulfurous Acid<br>Tar<br>Trichloroethylene                                     | C<br>C<br>A<br>B      | C<br>C<br>A<br>B           | C<br>C<br>A<br>B      | C<br>C<br>A<br>B           | C<br>C<br>A<br>B                | C<br>C<br>A<br>B                | C<br>C<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | C<br>B<br>C<br>A<br>A | A<br>A<br>A<br>A           | C<br>A<br>A<br>A           | B<br>B<br>A<br>A           | C<br>C<br>A<br>A                | A<br>A<br>A<br>A           |
| Turpentine<br>Vinegar<br>Water, Boiler feed, Amine Treated<br>Water, Distilled<br>Water, Sea                                          | A<br>B<br>A<br>C      | A<br>B<br>A<br>A<br>A      | B<br>C<br>A<br>C<br>C | A<br>C<br>A<br>C<br>C      | A<br>A<br>A<br>C                | A<br>A<br>A<br>C                | A<br>A<br>A<br>B           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>A<br>A      | A<br>A<br>A<br>A           | A<br>A<br>A<br>A           | A<br>A<br>C<br>A<br>A      | A<br>A<br>A<br>A                | A<br>A<br>A<br>A           |
| Whiskey and Wines<br>Zinc Chloride<br>Zinc Sulfate                                                                                    | A<br>C<br>C           | A<br>C<br>C                | C<br>C<br>C           | C<br>C<br>C                | A<br>C<br>A                     | A<br>C<br>A                     | A<br>C<br>A                | A<br>B<br>A                | A<br>B<br>A                | A<br>B<br>A                | A<br>A<br>A           | A<br>A<br>A                | A<br>A<br>A                | A<br>B<br>A                | A<br>A<br>A                     | A<br>A<br>A                |



#### **REQUEST FOR QUOTATION**

When requesting a quotation, please fill in the following input form as completely as possible, and submit.

| DESIGN SPECIFICATION<br>DESIGN INPUTS (to be completed by sales/engine<br>General Info: | eering)                                                               | ε          |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------|
| Sales Order No Item No                                                                  | Customer P.O. No Customer Item/Tag No                                 |            |
| Customer Design Specification No.                                                       | Valve Type: Butterfly Other                                           |            |
|                                                                                         | minal Size Pressure Class Design Code                                 |            |
| FACE TO FACE: API 609 CAT. B ISO 5752                                                   |                                                                       |            |
| END CONNECTION: Wafer Lugged Flan                                                       |                                                                       |            |
| FLANGE DRILLING: ANSI B16.5 ANSI B16.47                                                 | ANSI B16.47 Other                                                     |            |
| Process Info:                                                                           | series B                                                              |            |
|                                                                                         | Pressure Operating Temperature                                        |            |
| Design Pressure: Full ANSI Rating                                                       | Other                                                                 |            |
| Design Differential Pressure: Full ANSI Rating                                          | Other                                                                 |            |
| Design Temperature                                                                      | Flow Rate                                                             |            |
|                                                                                         | Control/Throttling ESDV Other                                         |            |
|                                                                                         |                                                                       |            |
| Materials Info:                                                                         |                                                                       |            |
|                                                                                         | A351 CF8M Other                                                       |            |
|                                                                                         |                                                                       |            |
| DISC SEAL MATERIAL: 316/Klinger                                                         |                                                                       |            |
|                                                                                         |                                                                       |            |
| SHAFT MATERIAL: 17-4 Ph DH1150 (NACE)                                                   |                                                                       |            |
| BEARING MATERIAL:                                                                       | Nitronic 60 Other                                                     |            |
| PACKING MATERIAL:                                                                       | PTFE Chevron PTFE Braided Other                                       |            |
| INTERNAL FASTENERS: 316 SST Other                                                       | EXTERNAL FASTENERS: B8M CL1 Other                                     |            |
| EXTERIOR FINISH: Primed (WCB only)                                                      | A&M Std. Paint (WCB only)                                             |            |
| SPECIAL CLEANING OR SURFACE PREPARATION:                                                | Degreasing for O2 Service Other                                       |            |
| Options Info:                                                                           |                                                                       |            |
| Bearing Protector Bearing Purge                                                         | Steam Jacket - Steam Pressure/Temp.                                   | —          |
| Steam Traced Shaft Steam Traced Disc -                                                  | Steam Pressure/Temp.                                                  |            |
| Block and Bleed High Temperature                                                        | Cryogenic Temperature Double Stuffing Box                             |            |
| Packing Lubrication Live Loading                                                        | Secondary Cover Seal Other                                            |            |
| REMARKS:                                                                                |                                                                       |            |
|                                                                                         |                                                                       |            |
|                                                                                         | Remote Mastergear Other                                               |            |
|                                                                                         |                                                                       |            |
| Worm Gear Handwheel Chainwheel                                                          |                                                                       | <b>.</b> . |
| Pneumatic Actuator - Air Supply (PSIG).                                                 | _ Double Acting Spring Return Fail Last Fail Open Fail Close          |            |
| Hydraulic Actuator - Hydraulic Pressure (PSIG).                                         |                                                                       | 30         |
| Electric Actuator - Power Source (Volts).                                               |                                                                       |            |
| Other Actuator                                                                          |                                                                       |            |
| REMARKS:<br>Inspection and Testing Info:                                                |                                                                       |            |
|                                                                                         | ore Material Purchase Before Fabrication Before Shipmen               | t          |
| Customer Inspection: No Yes                                                             | - Notice Required                                                     |            |
|                                                                                         | UT Radiography                                                        |            |
| Area: Casting Machi                                                                     | ined Surfaces Fabrication and Repair Welds Seat Overlay Critical Area | as         |
| Test Method                                                                             | Acceptance Criteria                                                   |            |

#### Score Energy Products, Inc.- VALVE MODEL NUMBERING SYSTEM

|              | VAL           | E BODY |          |   |                  | INTERNAL COMPONENTS |                          |                     |                   |                               |   | ADDITIONAL FEATURES                                             |   | OPERATOR |
|--------------|---------------|--------|----------|---|------------------|---------------------|--------------------------|---------------------|-------------------|-------------------------------|---|-----------------------------------------------------------------|---|----------|
| ANSI<br>LASS | VALVE<br>SIZE | TYPE   | MATERIAL | - | DISC<br>MATERIAL | LAMIN               | STACK<br>NATION<br>ERIAL | BEARING<br>MATERIAL | SHAFT<br>MATERIAL | PACKING<br>MATERIAL/<br>STYLE | - | SEE LIST BELOW;<br>SECTION OMITTED IF NO<br>ADDITIONAL FEATURES | - | OPERATOR |
|              |               |        |          |   |                  |                     |                          |                     |                   |                               |   |                                                                 |   |          |

# Standard valves: Features noted in bold italic print are standard design. Where the standard design differs between CL150 and CL300, this is noted by 3 asterisks (\*\*\*) for CL150 and 4 asterisks (\*\*\*\*) for CL300/600.

**BODY MATERIAL** (1digit)

A = A216 Gr. WCB\* w/ 316L SST seat

B = A352 Gr. LCB\* w/ 316L SST seat

C = A351 Gr. CF8M\* - integral seat

#### NOTES

- or equivalent \*\* - Score standard \*\*\* - Score standard for CL150 \*\*\*\* - Score standard for CL300, CL600 ANSI CLASS (2 digits) 15 = 150 30 = 300 60 = 60031 = 300 x 150 61 = 600 x 150  $63 = 600 \times 300$ 96 = 900 x 600 93 = 900 x 300 XX = Other VALVE SIZE (2 digits) Indicates nominal valve size in inches. Reduced -port valves indicate size of internals assuming the external dimensions to be one size larger (12 refers to 14 x 12). Typical sizes: 03 04 06 08 10 12 14 16 18 20 24 30 36 42 48 54 60

TYPE (1 digit) B = Buttweld (cast only) D = Double- flange L = Lugged wafer R = Reduced-port wafer S = Reduced-port lug wafer

W = Plain wafer

X = Other

T = Reduced-port double flange

- D = A494 Gr. M-30-C Monel\* integral seat E = B148 Gr. C95500 Nickel - Aluminum -Bronze\*- integral seat F = A494 Gr. CW2M Hastellov C\* - integral seat G = A351 Gr. CN7M Alloy 20\* w/ integral seat H = A352 Gr. LCC\* w/ 316L SST J = Grade 2 Titanium K = A216 Gr. WCB\* w/ Stellite #21 seat L = A352 Gr. LCB\* w/ Stellite #21 seat M = A351 Gr. CF8M\* w/ Stellite #21 seat N = Duplex CD3MN P = A217 Gr. C5 Chrome- Moly S = A217 Gr. WC6 w/ 316L SST seat X = material not listed above DISC (1 digit) A = A216 Gr. WCB\* B = A352 Gr. LCB\* C = A351 Gr. CF8M\* D = A494 Gr. M-30-C Monel\* E = B148 Gr. C95500 Nickel- Aluminum - Bronze\* F = A494 Gr. CW2M Hastelloy C\* G = A351 Gr. CN7M Alloy 20\*
- H = A352 Gr. LCC\* J = Grade 2 Titanium\* N = Duplex CD3MN P = A217 Gr. C5 Chrome - Moly S = A217 Gr. WC6 X = Other
- SEAL STACK (2 digits) First digit – Lamination *G* = Grafoil laminated\*\* K = Klingersil C4401 laminated S = Solid X = Other lamination Second digit – Material 1 = 316 SST\*\* 2 = Monel 400 3 = Inconel 600 4 = Duplex 2205 X = Other

BEARING (1 digit)

- 1 = Carbon Metcar M10 or Speer Grade H\*\*\*
- 2 = Nitronic 60\*\*\*\*
- X = Other

#### SHAFT (1 digit)

- 1 = 17.4 PH DH1150\*\*
- 2 = 17.4 PH H1025 (full-rated CL150, 30"+ valves - non-NACE compliant)
- 3 = 316 SST
- 4 = Inconel 600
- 5 = Monel K500
- 6 = Titanium Grade 5
- 7 = Alloy 20
- 8 = Inconel 625
- 9 = Duplex 2205
- X = Other

#### PACKING (1 digit)

- 1 = Grafoil (die-formed & Inconel braided
  - combination)\*\*
- 2 = PTFE Teflon Chevron type
- 3 = PTFE Teflon braided
- 4 = Grafoil Low Emission
- X = Other

#### ADDITIONAL FEATURES (As many digits as required;

- list as required in alphabetical order)
- B = Bearing seals
- C = Cryogenic extension (does NOT include degreasing)
- D = Degreased for oxygen service
- H = Heat extension
- J = Steam jacket
- L = Live loaded packing
- N = NACE MR0103 or 0175 compliant (specify which spec)
- P = Special paint, plating or coating
- S = Secondary cover plate seal (GHE grafoil gasket in addition to metal O-ring)
- T = Steam-traced shaft
- X = Other special feature
- OPERATOR (1 digit) A = Actuator B = Bare stem G = Manual gear w/ handwheel

For example, valve with model number 1512WA-AG1111-BLS-B would be a 12" ANSI Class 150 valve with A216 Gr. WCB body and disc, 316SST/Grafoil laminated seal stack, carbon bearings with bearing seals, 17-4 PH DH1150 shaft, grafoil live-loaded packing and a secondary cover plate seal; no gear operator or actuator would be included.



# Score-TRICENTRIC® Valves Quality & Performance Tested



#### **Score-TRICENTRIC®**

valves have been tested and proven to maintain tight shut-off in cryogenic service (liquid oxygen and liquid nitrogen, as required by NASA), oxygen plants, chemical plants and refineries.




Registered and certified by ABSA (Alberta Boilers Safety Association) • Certificate No. 3514

Registration No. AQP-5044







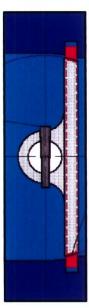


#### QUALITY MANAGEMENT Registered with Quality Certication Bureau (QCB)

- Registration No. 00-1102
- ISO 9002

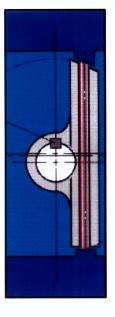





#### SULPHUR TESTED

**Score-TRICENTRIC®** valves have been tested and approved for liquid sulphur, solidified sulphur and sulphuric acid gas services.




## **Resilient Seated**

Original butterfly valve had shaft penetration through the seal plane. Dowel pin through disc and shaft often leaked. Note the interference between the seal and the disc which is needed to effect a tight seal. This will wear with use and eventually leak.



#### **Resilient Seated**

The next step in butterfly valve evolution was to move the shaft from the seal plane. Dowel pin parallel to disc does not leak. Note that this design also relies upon interference for sealing and will also eventually leak.



# Score-TRICENTRIC® Metal Seal

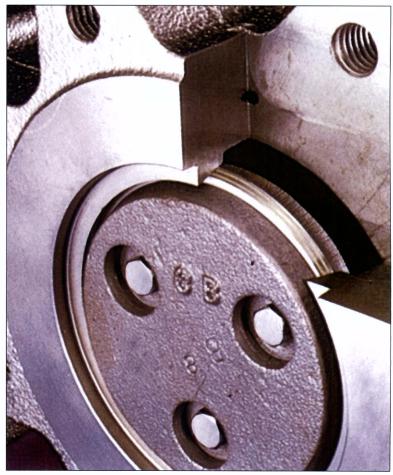
The triple eccentricity with the metal seal is the final step in the evolution. Square keys are utilized for torque transmission. Since there is no interference between mating parts during closure, seal wear is eliminated and the seal actually becomes tighter with use. Tight shut-off up to 1200° F.



#### Pulp Making

Recove

Washing/


Bleaching

Preparation

Paper Making

# Score-TRICENTRIC® High Performance Pulp and Paper Valves

A primary consideration in the selection of high performance valves is the ability to provide tight shutoff. Because of their unique design, Score TRICENTRIC® valves are able to cover a broad range of applications in nearly every industry. Built for services that demand performance in the chemical processing, petroleum, pulp and paper, refinery, steel and utility industries, the Score TRICENTRIC® valve, as a standard combines performance and dependability. As a precision machined valve, it is able to provide



positive shutoff in vacuum services and pressures to 1440 psi (100 bar). The patented sealing system has been the subject of extensive testing under carefully controlled conditions in our testing lab and at independent labs.

|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                | APPLICATIONS                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recovery                                                                                                                                                                                                                                                                                                                                                                         | Washing/Bleaching                                                                                                                                                                                                                                                                                                                                                                                              | Stock Preparation                                                                                                                                                                                                                                 | Paper Making                                                                                                                                                                                                                                                                                                   | General Service                                                                                                                                                                                    |
| <ul> <li>Black Liquor</li> <li>Soap</li> <li>Tall Oil</li> <li>Evaporator vapor<br/>switching valves</li> <li>Weak &amp; heavy red<br/>liquor</li> <li>Green liquor</li> <li>Magnesium oxide<br/>slurry</li> <li>Washer valving</li> <li>Dissolving tank</li> <li>Causticizers</li> <li>Blow heat recovery</li> <li>Soap skimmer</li> <li>Sulphur dioxide<br/>service</li> </ul> | <ul> <li>Chlorination<br/>process ins.</li> <li>Chlorine dioxide</li> <li>Filtrate</li> <li>Dilution water<br/>stock</li> <li>Dilution liquor</li> <li>Caustic soda</li> <li>Oxygen systems</li> <li>White water lines</li> <li>Elemental chlorine</li> <li>Sodium or calcium<br/>hypochlorite</li> <li>Chlorine dioxide</li> <li>Hydrogen peroxide</li> <li>Chlorine (wet)</li> <li>Sulphuric acid</li> </ul> | <ul> <li>7% stock control</li> <li>Stock shut-off<br/>valves</li> <li>Recirculation<br/>valves</li> <li>Level control</li> <li>Clay filler</li> <li>Large water lines</li> <li>Stock sampling</li> <li>Dilution controls</li> <li>Dyes</li> </ul> | <ul> <li>Pulp stock control</li> <li>Dryer steam &amp; condensate</li> <li>Stock blending &amp; recirculation</li> <li>Head box (air padding)</li> <li>Sizing</li> <li>Coating</li> <li>Saturated steam</li> <li>Wash down lines</li> <li>Vacuum services</li> <li>Consistency &amp; level controls</li> </ul> | <ul> <li>Saturated steam</li> <li>Water treatment</li> <li>Black liquor<br/>gasses</li> <li>Boiler water</li> <li>Mill water</li> <li>Demineralized<br/>water</li> <li>Digester gas off</li> </ul> |



General Service



Manufactured in Edmonton, Alberta, Canada by:

#### **Score Energy Products Inc.**

9821 - 41 Avenue, Edmonton, Alberta, Canada T6E 0A2 Phone: (780) 466-6782 • Fax: (780) 465-6979 email: <u>sales@scorevalves.com</u> website: <u>www.scorevalves.com</u>

#### **CALGARY REGIONAL SALES OFFICE**

Phone: (403) 256-7217 • Fax: (403) 201-7612 email: <u>scorecal@telusplanet.net</u>

Sold and distributed by: